Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  light trapping
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.
EN
The research of the optimal surface structure has attracted considerable interest because of its potential application in light trapping in thin-film solar cells (TFSCs). In this paper, a super-fine structure named complex trapezoid grating is proposed to improve the optical absorption comparing to the conventional simple trapezoid grating in a-Si:H TFSCs. The numerical calculation by utilizing rigorous coupled-wave analysis (RCWA) is conducted to obtain the optical absorption of the structured surface. The results demonstrate that, compared to a planar slab, the optimized-simple trapezoid grating shows 97% enhancement of power conversion efficiency η while the complex trapezoid grating shows 131% enhancement. Obviously, the complex trapezoid grating exhibits a better performance than the simple grating, which is due to the perfect antireflective effect and microcavity resonance effect. The angular response of the optical absorption in a-Si:H TFSCs was also investigated. The results further indicate that it is a better way to select the complex trapezoid grating in improving the optical absorption of silicon-based TFSCs.
EN
In our studies the absorption, transmittance and reflectance spectra for periodic nanostructures with different parameters were calculated by the FDTD (Finite-Difference Time-Domain) method. It is shown that the proportion of reflected light in periodic structures is smaller than in case of thin films. The experimental results showed the light reflectance in the spectral range of 400–900 nm lower than 1% and it was significantly lower in comparison with surface texturing by pyramids or porous silicon. Silicon nanowires on p-type Si substrate were formed by the Metal-Assisted Chemical Etching method (MacEtch). At solar cells with radial p-n junction formation the thermal diffusion of phosphorus has been used at 790°C. Such low temperature ensures the formation of an ultra-shallow p-n junction. Investigation of the photoelectrical properties of solar cells was carried out under light illumination with an intensity of 100mW/cm2. The obtained parameters of NWs' solar cell were Isc = 22 mA/cm2, Uoc = 0.62 V, FF = 0.51 for an overall efficiency η = 7%. The relatively low efficiency of obtained SiNWs solar cells is attributed to the excessive surface recombination at high surface areas of SiNWs and high series resistance.
4
EN
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.
EN
In this paper, we propose a new design and comprehensive optimization process for improving the diffraction gratings used as the back reflector of silicon solar cells. For this process, the optimum refractive index and its corresponding available material which can be used as the grating material has been chosen as 1.57 and SiO2, respectively. Also, all of geometric parameters which affect the performance of the grating, such as periodicity, height and depth of grating profiles have been studied and the appropriate values for each of them have been proposed. In order to optimize the profile of grating, a transition from triangular to rectangular structure has been considered and finally a specific trapezoidal profile has been chosen as the optimized grating back reflector which enhances the cell efficiency up to 6%. Simulation results show that the different grating profiles have the same duty cycle and therefore use the same amounts of materials.
EN
The improvement of optical confinement on the back crystalline silicon solar cell is one of the factors leading to its better performance. Porous silicon (PS) layer can be used as a back reflector (BR) in solar cells. In this work, single layers of porous silicon were grown by electrodeposition on a single crystalline silicon substrate. The measurement of the total reflectivity (RT) on Si/PS surface showed a significant improvement in optical confinement compared to that measured on Si/standard Al back surface field (BSF). The internal reflectivity (RB) extracted from total reflectivity measurements achieved 86 % for the optimized single PS layer (92 nm thick layer with 60 % porosity) in the wavelength range between 950 and 1200 nm. This improvement was estimated as more than 17 % compared to that measured on the surface of Si/BSF Al contact. To improve the stability and passivation properties of PS layer BR, silicon nitride layer (SiNx) was deposited by PECVD on a PS layer. The maximum measured total reflectivity for PS/SiNx achieved approximately 56 % corresponding to an improved RB of up to 83 %. The PS formation process in combination with the PECVD SiNx, can be applied in the photovoltaic cell technology and offer a promising technique to produce high-efficiency and low-cost c-Si solar cells.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.