Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lifeboat
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Today, a significant number of quite advanced technology applications support safety at sea. To the dismay of the maritime industry, the manifestation of passengers during an evacuation scenario/case has not followed a similar path of improvement, when compared to the counterpart Life Saving Appliances (LSA) Code. Embarkation and muster proceedings are still following the similar approaches that were established during the early 1900s. There have been relatively few advances in these procedures; most often, they include manually checking-in the passengers on electronic systems, along with “on the spot” completion of check-off lists and passenger counts, allowing for an influx of potential error by the concerned personnel. Furthermore, the rely and transmission of the manifest to a Maritime Rescue Coordination Centre (MRCC) is often associated with a considerable amount of time, or even involving secondary passenger counts, after the disembarkation event has been concluded. It is understandable that a vessel with limited people on-board (tankers, bulk carriers, container vessels, etc.) can effectively be abandoned in a matter of minutes, but what happens with vessels carrying a large number of passengers and more specifically those heavily engaged with cruising activities? This paper examines the creation of an electronic manifestation system that will be able to automatically record the passengers during lifeboat embarkation. This proposed system will employ the use of Near-Field Communication (NFC) and/or (Radio-frequency identification) RFID bracelets, that are already utilized within the cruise industry. It will record relevant passenger and crew data, upon their boarding on the designated lifeboat, through readers installed on the parallel sides of the entryway. The data will be displayed in electronic tablet devices to the lifeboat leaders, as well as to the Master of the vessel in real-time. This will allow for an accurate representation of the evacuation process in any given moment. Furthermore, a complete “snapshot” of that information can also be directly transmitted to the MRCC via an automated message and without any further human intervention, or even stored locally aboard the lifeboats used for the evacuation and the ship’s Vessel Data Recorder (VDR).
EN
The assessment of lifeboat coxswain performance in operational scenarios representing offshore emergencies has been prohibitive due to risk. For this reason, human performance in plausible emergencies is difficult to predict due to the limited data that is available. The advent of lifeboat simulation provides a means to practice in weather conditions representative of an offshore emergency. In this paper, we present a methodology to create probabilistic models to study this new problem space using Bayesian Networks (BNs) to formulate a model of competence. We combine expert input and simulator data to create a BN model of the competence of slow-speed maneuvering (SSM). We demonstrate how the model is improved using data collected in an experiment designed to measure performance of coxswains in an emergency scenario. We illustrate how this model can be used to predict performance and diagnose background information about the student. The methodology demonstrates the use of simulation and probabilistic methods to increase domain awareness where limited data is available. We discuss how the methodology can be applied to improve predictions and adapt training using machine learning.
PL
W artykule omówione zostały badania zawartości szkła w materiale dla różnych składów chemicznych laminatu. Testy zostały przeprowadzone na materiałach z żywic poliestrowo-szklanych. Badany kompozyt poliestrowo-szklany jest przeznaczony na budowę łodzi ratunkowych. Badania przeprowadzono na podstawie wymagań Towarzystwa Klasyfikacyjnego Lloyd Register of Shipping.
EN
The article discusses the content of glass in the material for various chemical compositions of the laminate. The tests were carried out on materials made of polyester-glass resins. Polyesterglass composite is tested for the construction of lifeboats. The research was conducted on the basis of the requirements of the Classification Society - Lloyd Register of Shipping.
Logistyka
|
2015
|
nr 4
8113--8120, CD2
PL
Offshorowy przemysł naftowy posiada swój własny system logistyczny odpowiadający potrzebom złożonych operacji w nieprzyjaznym morskim środowisku. Logistyka offshorowa jest odpowiedzialna za dostarczanie materiałów konstrukcyjnych, różnych ładunków masowych i kontenerów, zaopatrzenie w paliwo a także przewożenie personelu z brzegu na odległe pola naftowe i z powrotem. Ładunki są przewożone za pomocą specjalnych statków zaopatrzeniowych oraz holowników wielozadaniowych. Najbardziej wydajnym środkiem transportu ludzi są helikoptery pasażerskie. W umiarkowanych strefach klimatycznych szybkie jednostki pasażerskie są używane jako tańszy zamiennik dla transportu helikopterowego. Przemysł offshorowy należy do grupy obarczonej wysokim stopniem ryzyka gdzie sytuacje awaryjne często mają miejsce. W 1988 roku eksplozja platformy Piper Alpha na Morzu Północnym spowodowała śmierć 167 pracowników. Przeprowadzone po katastrofie śledztwo zaowocowało istotnym wzrostem bezpieczeństwa w przemyśle offshorowym oraz ulepszonymi metodami ratownictwa. Łańcuch logistyczny został rozciągnięty na ewakuację ludzi w sytuacji zagrożenia życia. Typowe metody ratownictwa morskiego są niewystarczające dla potrzeb morskich pól naftowych. Przemysł offshorowy zmuszony był opracować własne standardy ratownictwa oraz stworzyć odpowiedni sprzęt ratowniczy. Na Morzu Północnym przemysł offshorowy stworzył swój własny system ratownictwa. System okazał się bardzo skuteczny i dalej jest rozwijany, aby dotrzymać kroku zmianom w infrastrukturze Morza Północnego. Wsparcie finansowe dla ‘Jigsaw’ zapewnia morskie górnictwo naftowe Morza Północnego.
EN
Offshore petroleum industry has its own logistic system created to meet requirements of industry complex operations in hostile marine environment. Offshore logistic is responsible for supplying installations with construction materials, variety of bulk and packaged goods, refuelling and personnel movement. Purpose built offshore supply vessels and multipurpose tugs are primary means of transportations. Most efficient way of workers movement to and from distant offshore fields are public transport helicopters. In moderate climatic environment sometimes fast crew boats are used as cheaper replacement for helicopters. Offshore industry belongs to high risk industries where emergency situations are frequent. In 1988 explosion of North Sea rig Piper Alpha resulted in death of 167 offshore workers. Enquiry conducted after this catastrophic event led to radical improvement in offshore safety and rescue methods. Extension of logistic chain is responsible for personnel evacuation if workers life is endangered. Typical search and rescue methods applicable for commercial shipping are insufficient for offshore fields. Offshore industry had to set up its own industry standards and develop specific types of rescue equipment. At North Sea oil and gas industry created its own SAR system known as project ‘Jigsaw’. System became very successful and still is being modified to keep pace with changes in North Sea infrastructure. Financial support for ‘Jigsaw’ provides North Sea offshore industry.
Logistyka
|
2015
|
nr 4
8121--8128, CD2
EN
Arctic is very specific environment for offshore industry. Rescue in polar conditions is much more difficult due to harsh environment where unprotected human being has no chance to survive. Offshore logistic is responsible for EER at Arctic offshore fields where SAR services support is limited and takes long time. To meet these challenges offshore industry developed new techniques and equipment for rescue purposes. Arctic can be split in three separate regions. Each of them needs different rescue methods and equipment. Rescue methods at Barents Sea are similar to North Sea but taking into consideration much lower temperatures and possibility of ice. Pechora Sea in autumn and winter times has one year ice cover impeding use of typical offshore vessels. Supply operations and EER in such conditions are provided by new class of Multifunction Ice-Breaking Supply Vessels. Third type of Arctic environment is Beaufort Sea with shallow water installations built on made-made islands. Special type of amphibious craft has been developed by offshore industry to facilitate EER for such installations.
PL
Arktyka jest specyficznym środowiskiem dla przemysłu ofshorowego. Ratownictwo w warunkach polarnych jest utrudnione z powodu ostrego klimatu gdzie człowiek bez ochrony nie ma szansy na przeżycie. Logistyka offshorowa jest odpowiedzialna za ratownictwo i ewakuację na arktycznych polach naftowych, gdzie wsparcie służb ratowniczych jest ograniczone i dostępne dopiero po długim czasie. Aby sprostać tym wymaganiom, przemysł ofshorowy opracował nowe techniki ratownicze oraz sprzęt przeznaczony do tego celu.. Metody ratownicze na Morzu Barentsa są podobne do Morza Północnego ale uwzględniaja zancznie niższe temperatury i możliwość wystąpienia lodu. Morze Peczorskie w okresie jesiennym i zimowym jest pokryte jednorocznym lodem, który ogranicza wykorzystanie typowych statków ofshorowych. Zaopatrzenie oraz ratownictwo w takich warunkach zapewniają statki nowego typu: wielofunkcyjne lodołamacze zaopatrzeniowe. Trzecim typem środowiska arktycznego jest Morze Beauforta z płytkowodnymi instalacjami zbudowanymi na sztucznych wyspach. Dla nich przemysł ofshorowy opracował specjalny pojazd amfibijny służący do celów ratowniczych.
EN
This paper is a continuation of the work titled : “A computational model for simulation of motion of rescue module during its launching from stern ramp of a ship at rough sea”. It presents results of computer simulations of motion of a rescue module with embarked persons during its launching on rollers along stern ramp of a ship at rough sea. The simulations were conducted for a selected ship fitted with a launching ramp , for a few selected scenarios of sea conditions. It was assumed that during this operation the ship drifts across direction of wave propagation.
EN
The article presents a numerical model of object motion in six degrees of freedom (DoF) which is intended to be used to simulate 3D motion of a lifesaving module during its launching from a ship using a stern ramp in rough sea. The model, of relatively high complexity, takes into account both the motion of the ship on water in changing sea conditions, and the relative motion of the ramp with respect to the ship. The motion of the ramp changes and strongly depends on its constructional and geometrical parameters. The presented model takes into account the displacement of the submerged part of the ramp, as well as its damping in the water and the interaction with the module moving on it. The results of test simulation of a module launching from the ship in still water are included.
PL
W artykule przedstawiono problemy operacyjne związane z wykorzystaniem systemów ewakuacyjnych morskich instalacji wiertniczych i produkcyjnych, ze szczególnym uwzględnieniem ostatniej fazy ewakuacji. Omówiono charakterystyki systemów wpływające na proces ewakuacji i podkreślono znaczenie znajomości charakterystyk bezpieczeństwa środków ratunkowych. Zaproponowano funkcję bezpieczeństwa dla tratwy ratunkowej.
EN
The paper presents operational problems of evacuation systems used on board offshore drilling and production installations, especially with respect to the final stage of evacuation process. The systems characteristics influencing the evacuation process have been described and significance of knowledge of safety characteristics of life saving appliances has been emphasised. The safety function for the life raft has been proposed.
9
Content available Free fall life boat hazard measures
EN
Between 1985 and 1992, at the NUTEC training facility in Bergen training launches at heights of both 28 meters and 12.5 meters took place. During this period sixteen injuries to personnel were sustained. It is not recorded if all the injuries were associated with a particular launch height and it is assumed that the injuries followed launches from both heights. It is noted that a higher number of injuries occur during on-board ship drills than during shore-based training. The Swedish submission concludes that, 'During the launch of the free-fall lifeboat, there is a potential for the occupants to be injured'. As a result of these accidents interesting topic for further research and development has become evident: evaluation of performance of a free fall lifeboat in a wind and wave environments. In the paper the stochastic model of wave influence on the free fall lifeboat trajectory is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.