Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  life-cycle assessment
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: The COVID-19 changes our lifestyle and triggers the rapid development of online shopping resulting in massive use of plastic for packaging for each parcel. Hence, plastic waste management has become a worrying concern in some countries. This research proposes that the circular supply chain could be a way to reduce plastic waste with regards to the triple bottom line: economy, social, and environment. It applies the life-cycle assessment (LCA) and target sampling method. Methods: The data about plastic waste, including the production, consumption, and the end-of-life stage from target developed countries were collected and analyzed. By comparing practices applied in Germany and South Korea, this research investigates a framework for both the upstream and the downstream through the implementation of the 4R concept: reduce, reuse, recycle, and recovery. Results and conclusions: This study provides new insights of the circular supply chain from the perspective of the government, producers, and consumers and call for more attention from the demand perspective (involving more efforts from authorities and consumers) of the plastic industry instead of only concentrating on the supply perspective.
PL
Wstęp: COVID-19 zmienił nasz styl życia i wpłynął na drastyczny wzrost zakupów dokonywanych on-line, co z kolei związane jest ze znacznym wzrostem użycia opakowań plastikowych. Z tego też powodu zagadnienia gospodarki odpadami plastikowymi zdaje się być coraz ważniejszym tematem w wielu krajach. W pracy proponowane jest rozwiązanie zamkniętego obiegu opakowaniami plastikowymi na trzech poziomach: ekonomicznym, społecznym i środowiskowym. Jest to powiązane z zarządzaniem cyklem życia (LCA). Metody: Zebrano i poddano analizie dane dotyczące odpadów plastikowych, obejmujące produkcję, konsumpcję oraz cały cykl życia w krajach rozwiniętych. Poprzez porównanie stosowanych praktyk w Niemczech i Południowej Korei stworzono ramy wdrożenia koncepcji 4R: redukcja, ponowne użycie, recycling i odzyskiwanie surowców wtórnych. Wyniki i wnioski: W pracy zaprezentowano nowe spojrzenia na zamknięty łańcuch dostaw z punktu widzenia rządu, producentów oraz konsumentów oraz zwrócono uwagę na istotność uwzględniania możliwości przemysłu wyrobów plastikowych (co wymaga zaangażowania zarówno ze strony rządu jak i konsumentów) a nie tylko oczekiwań konsumentów.
EN
Full electric (FEV) and plug-in hybrid (PHEV) vehicles are promising, forward-looking technologies to reduce greenhouse gas (GHG) emissions and other pollution related to road transport. The powertrain of a FEV is composed of a battery, control electronics and the electric motors. A PHEV has much lower battery capacity but it contains an extra internal combustion engine and gearbox. Many argue that FEVs are more energy-efficient than internal combustion engines. However, this energy needs to be stored in heavy, large-capacity battery packs that require plenty of energy and resources to produce as well as highly polluting rare earth elements mining. In this article, an environmental comparison of FEVs and PHEVs is shown using life cycle assessment (LCA). To make the comparison realistic, two models similar in size and power have been selected: Volkswagen E-Golf FEV and Volkswagen GTE PHEV. Results show that the production of FEVs need more energy and it means more burden on the environment however during the use phase it causes less emissions. Since the local electricity production mix and, in case of PHEVs, the user behaviour highly affects the results, three different countries (Hungary, Poland and Norway) and two different use types are considered. The quantified environmental footprints as well as the break-even distances are presented. Sensitivity of the results towards the assumed conditions during the whole design lifetime of the vehicles is discussed.
EN
Post-harvest handling / processing of fishery commodities requires large amounts of water and energy to overcome their perishable properties. Water is needed as raw/auxiliary material and to ensure that the production process and its environment meet the sanitary and hygiene principles. Meanwhile, large amount of energy is required for the transportation of raw materials and products, cold chain system during the process and operations of processing machines. They contribute towards the environmental impact of fish processing. This study used life cycle assessment to estimate the potential environmental impact of small scale mackerel fish processing. The results showed that the fish processing has contributed to 0.079 kg SO2 eq acidification potential, 9.66 kg CO2 eq climate changGWP 100, 0.02 kg PO4 eq Eutrophication-generic, 0.17 kg 1.4 DCB eq human toxicity-HTP inf, and 0.0015 kg ethylene eq photochemical oxidation-high NOx. Wastewater treatment implementation simulation showed elimination of direct emissions that contribute to eutrophication and increasing the potential of other process associated with energy consumption.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.