Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  liczba Prandtla
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45 orientation of the cylinder for new applications.
EN
Investigation for heat transfer behaviour of Al2O3 and CuO nano-fluid in helical coil heat exchangers was carried out in this study. The thermo-physical properties of the fluids have temperature dependent nature. The main emphasis was to depict the influence of nano-particle concentration by volume on the characteristics of temperature, rate of heat transfer and heat transfer coefficients (convective). In order to enhance efficiency, density and thermal conductivity are considered to be the most important variables. In comparison to water and for equal flow rate, the rate of heat transfer of nano-fluid increases conspicuously. Efficiency of the helical coil heat exchanger increased by 38.80%.
EN
The aim of the present paper is to analyse the effect of MHD on unsteady natural convection boundary layer flow and heat transfer over a truncated cone in the presence of pressure work. Suitable transformation is utilized to form a system of coupled non-linear partial differential equations for governing both the flow and heat transfer. These equations have been solved numerically by utilizing an implicit finite difference scheme along with quasilinearization method. Here, the computed numerical results are displayed graphically in terms of the local Nusselt number, skin friction, temperature distribution, and velocity distribution for various values of the magnetic and pressure work parameters along with the fixed Prandtl number
EN
In this paper, an unsteady 2-D incompressible fluid flow with heat and mass transfer in a four-sided lid driven square cavity is investigated numerically. The top, bottom, left, and right walls of the square cavity move to the right, left, downward and upward respectively. All four sides of the cavity move with a uniform velocity. The flow variables are simulated below the critical Reynolds numbers with isothermal and mass-transfer conditions in the square cavity. We have used a streamfunction-vorticity (ψ - ξ) formulation to investigate the fluid flow in terms of flow variables ψ, ξ, T and C at low Reynolds numbers (Re). The Prandtl number (Pr) and Schmidt number (Sc) have been chosen as 6:62 and 10, 50, 100, 150 respectively, in order to calculate the numerical solutions of T and C. The matrix method has been used to evaluate the stability and convergence of the numerical scheme. The conditions obtained from the matrix method have been used to arrive at the numerical solutions with desired accuracy.
EN
A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential equations by using similarity transformations. These non-linear ordinary differential equations are first linearized using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of various governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields.
EN
In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented in terms of velocity, temperature and pressure distribution for various values of the material parameters such as the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results and are found to be in excellent agreement. The results of the present study will hopefully enable a better understanding applications of the flow under consideration.
7
Content available remote Unsteady Hartmann flow in a rotating channel with perfectly conducting walls
EN
An unsteady Hartmann flow of a viscous incompressible electrically conducting fluid in a rotating channel with perfectly conducting walls under the action of a periodic pressure gradient is studied. An exact solution of the governing equations for the fully developed flow is obtained in a closed form. The expression for the shear stress at the upper plate is also derived. The solutions valid for vanishing and small finite magnetic Prandtl number are derived from the general solution. The asymptotic behavior of these solutions is analyzed, for large values of the frequency parameter […], to gain some physical insight into the flow pattern. It is found that a magnetic field tends to retard the fluid flow in both the primary and secondary flow directions whereas oscillations and rotation tend to accelerate it in both the directions. The magnetic field reduces primary and secondary induced magnetic fields whereas oscillations and rotation have reverse effect on it. The magnetic field reduces the primary as well as secondary shear stress at the upper plate […] whereas oscillations and rotation tend to increase it.
EN
An analysis has been carried out to study the steady viscoelastic hydromagnetic flow and heat transfer in a visco-elastic liquid flow over an exponentially stretching sheet with consideration of viscous dissipation. A zeroth order analytical local similar solution of the highly non-linear stream function equation and confluent hypergeometric solution of the heat transfer equation is obtained by converting the governing partial differential equation to ordinary differential equation by similarity transformations. The accuracy of the analytical solution for the stream function is verified by a numerical solution obtained by employing the Runge-Kutta fourth order method with shooting. The two following cases of surface conditions are studied, namely (1) prescribed exponential order surface temperature (PEST Case) and (2) prescribed exponential order boundary heat flux (PEHF Case). The effect of various parameters arising in the flow on momentum and heat transfer characteristics are presented graphically and the numerical results of wall temperature gradient (in PEST Case ) and wall temperature (PEHF Case ) are tabulated and compared with previous results.
EN
An analysis has been carried out to study the non-Darcy flow behavior and heat transfer characteristics of a non-Newtonian power law fluid over a non-isothermal stretching sheet with variable thermal conductivity and internal heat generation/absorption. Thermal conductivity is assumed to vary as a linear function of temperature. The partial differential equations governing the flow and heat transfer are converted into ordinary differential equations by a similarity transformation. The presence of non-Darcy forced convection and power law index leads to coupling and non-linearity in the boundary value problem. Because of the coupling and non-linearity, the problem has been solved numerically by the Keller box method. The computed values of horizontal velocity and temperature, boundary layer thickness are shown graphically in tables and figures. Several reported works on the problem are obtained as limiting cases of the present study. The results of the study have implications in extrusion processes and in other applications with porous media.
10
Content available remote Steady laminar water boundary layer flow over a yawed cylinder
EN
The aim of this work is to study the influence of temperature-dependent viscosity and the Prandtl number on the steady non-similar laminar forced convection flow over a yawed infinite circular cylinder starting from the origin of the streamwise coordinate to the point of separation (zero skin friction in the streamwise direction). The results show that the effect of variable viscosity and the Prandtl number is to move the point of separation downstream and the yaw angle has very little effect on the location of the point of separation. The heat transfer rate is found to depend strongly on viscous dissipation, wheras skin frictions are comparatively less affected. In general, the results pertaining to variable fluid properties differ significantly from those of constant fluid properties.
11
Content available remote Transient free-convective flow in a vertical channel due to symmetric heating
EN
This paper presents a closed form solution for a transient free convective flow of a viscous and incompressible fluid in a vertical channel due to symmetric heating of channel walls. The Laplace transform technique has been used to obtain the expression for the velocity and temperature fields by solving the governing differential equations. The influence of the physical parameters on the velocity field, skin-friction, rate of heat transfer and volumetric flux of the fluid are carefully analysed. A correlation between the steady state time and the Prandtl number has been developed. It is observed that the nature of correlation is linear when the Prandtl number is greater than one while cubic for the Prandtl number is less than one.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.