Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  legendre polynomials
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Computational intelligence firmly made its way into the areas of consumer applications, banking, education, social networks, and security. Among all the applications, biometric systems play a significant role in ensuring an uncompromised and secure access to resources and facilities. This article presents a first multimodal biometric system that combines KINECT gait modality with KINECT face modality utilizing the rank level and the score level fusion. For the KINECT gait modality, a new approach is proposed based on the skeletal information processing. The gait cycle is calculated using three consecutive local minima computed for the distance between left and right ankles. The feature distance vectors are calculated for each person’s gait cycle, which allows extracting the biometric features such as the mean and the variance of the feature distance vector. For Kinect face recognition, a novel method based on HOG features has been developed. Then, K-nearest neighbors feature matching algorithm is applied as feature classification for both gait and face biometrics. Two fusion algorithms are implemented. The combination of Borda count and logistic regression approaches are used in the rank level fusion. The weighted sum method is used for score level fusion. The recognition accuracy obtained for multi-modal biometric recognition system tested on KINECT Gait and KINECT Eurocom Face datasets is 93.33% for Borda count rank level fusion, 96.67% for logistic regression rank-level fusion and 96.6% for score level fusion.
EN
The actual motivation of this paper is to develop a functional link between artificial neural network (ANN) with Legendre polynomials and simulated annealing termed as Legendre simulated annealing neural network (LSANN). To demonstrate the applicability, it is employed to study the nonlinear Lane-Emden singular initial value problem that governs the polytropic and isothermal gas spheres. In LSANN, minimization of error is performed by simulated annealing method while Legendre polynomials are used in hidden layer to control the singularity problem. Many illustrative examples of Lane-Emden type are discussed and results are compared with the formerly used algorithms. As well as with accuracy of results and tranquil implementation it provides the numerical solution over the entire finite domain.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.