The paper addresses the problem of reducibility of nonlinear discrete-time systems, described by implicit higher order difference equations where no a priori distinction is made between input and output variables. The reducibility definition is based on the concept of autonomous element. We prove necessary reducibility condition, presented in terms of the left submodule, generated by the row matrix, describing the behavior of the linearized system, over the ring of left difference polynomials. Then the reducibility of the system implies the closedness of the submodule, like in the linear time-invariant case. In the special case, when the variables may be specified as inputs and outputs and the system equations are Niven in the explicit form, the results of this paper yield the known results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.