Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lead-silicate glasses
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Erbium-doped lead silicate glass has been investigated for near-infrared emission and up-conversion applications. Near-infrared emission due to 4I13/2→4I15/2 transition of Er3+ is relatively broad (70.5 nm) and long-lived (3.7 ms). Also, up-conversion luminescence spectra of Er3+ ions in lead silicate glass have been examined as a function of temperature. The relative intensities of luminescence bands corre-sponding to 2H11/2→4I15/2and4S3/2→4I15/2 transitions of Er3+ were determined with temperature. The fluorescence intensity ratio and temperature sensitivity were calculated. The maximum sensitivity for Er3+ doped lead silicate glass is close to 26.4 × 10−4K−1 at T = 590 K.
2
Content available remote The structure of Pb-PbO-SiO2 glass via molecular dynamics simulation
EN
The paper is dedicated to a molecular dynamics (MD) study of the structure of partially reduced lead-silicate glass of composition 1Pb 1PbO 1SiO2. The simulations have been performed in the constant volume regime, using a two-body potential (Born-Mayer repulsive forces, and Coulomb forces due to full ionic charges). The system was initially prepared as a well equilibrated hot melt, and then slowly cooled down to 300K. The information on short-range correlations were obtained in a conventional way (from pair and angular distribution functions), while the medium-range order was studied via cation-anion ring analysis. In the paper, the short- and medium-range order in the simulated system is discussed and compared with the structure of a glassy completely reduced system, i.e. 2Pb 1SiO2 and unreduced one, i.e. 2PbO 1SiO2 glass.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.