Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lateral continuity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Multichannel sparse spike deconvolution based on dynamic time warping
EN
Seismic sparse spike deconvolution is commonly used to invert for subsurface refectivity series and is usually implemented as an inversion scheme. Conventional sparse spike deconvolution method does not utilize the relationships among adjacent traces resulting in instability and poor lateral continuity of the inverted result. We propose a multichannel sparse spike deconvolution method with a sparsity-promoting constraint and an extra lateral constraint exploiting the spatial relationships among adjacent seismic traces. Firstly, the dynamic time warping (DTW) is performed between any two adjoining seismic traces to obtain the warping path (a series of estimated time shifts of one seismic trace relative to the other). Based on the assumption that if the inverted refectivity series is convolved with the same wavelet used for inversion, the newly constructed adjoining seismic traces shall also be conformable to the relationships exploited among the original seismic traces by DTW. A diference operator is constructed with the estimated time shifts to guarantee the diference operation is performed between corresponding time samples on adjoining seismic traces and the inversion is regularized with this diference operator as the lateral constraint. Synthetic and real data case studies confrm that inverted result obtained by the proposed method is superior to those obtained by single-channel sparse spike deconvolution method and another multichannel deconvolution method based on horizontal frst-order derivative constraint in both signal-to-noise ratio and lateral continuity.
2
Content available remote Stable absorption compensation with lateral constraint
EN
The presence of seismic absorption distorts seismic record and reduces seismogram resolution, which can be partially compensated by application of absorption compensation algorithms. Conventional absorption compensation techniques are based on 1D forward model with each seismic trace being compensated independently. Therefore, the 2D results combined by each compensation trace may be noisy and discontinuity. To eliminate this issue, we extend the 1D forward model to the 2D forward system and further add an additional lateral constraint to the compensation algorithm for enforcing the lateral continuity of the compensated section. Solving the proposed laterally constrained absorption compensation (LCAC) problem, we simultaneously obtain the multiple compensated traces with lateral smoother transition and higher signal-to-noise ratio (S/N). We testify the efectiveness of the proposed method by applying both synthetic and feld data. Synthetic data examples demonstrate the superior performance of the LCAC algorithm in terms of improving algorithmic stability and protecting lateral continuity. The feld data tests further indicate its ability to not only improve seismic resolution, but also inhibit the amplifcation of high-frequency noise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.