Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  laser-produced plasma
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawione są najnowsze osiągnięcia badań przeprowadzanych w eksperymencie laserowym PALS w Pradze (Prague Asterix Laser System) zrealizowanych przez zespół prof. dr. hab. Tadeusza Pisarczyka z Instytutu Fizyki i Laserowej Mikrosyntezy w Warszawie. W badaniach tych jako nowa efektywna diagnostyka wykorzystywana jest femtosekundowa polaro-interferometria, która została zaimplementowana dzięki zastosowaniu do oświetlenia układów diagnostycznych: 3-kadrowego interferometru i 2-kanałowego polar-interferometru, femtosekundowego lasera Ti:Sa o szerokości impulsu ok. 40 fs. Przedstawiono wybrane wyniki badań ilustrujące użyteczność femtosekundowej polaro-interferometrii w badaniach na PALS dotyczących: (i) udarowego zapłonu fuzji laserowej, (ii) nowej metody wytwarzania plazmy fotojonizacyjnej dla badań astrofizycznych oraz (iii) generacji wysokoenergetycznych jonów do zastosowań medycznych i radiografii.
EN
In the article the latest achievements of researches in the PALS experiment in Prague (Prague Asterix Laser System) carried out by a team of professor Tadeusz Pisarczyk from the Institute of Plasma Physics and Laser Microfusion in Warsaw are presented. In these studies, the femtosecond polaro-interferometry, as a new effective diagnostic is used, and which has been implemented thanks to irradiation diagnostic systems: 3-frame interferometer and 2-channel polaro-imterferometer by the Ti:Sa femtosecond diagnostic laser having a pulse duration of about 40 fs. The selected results are presented, which the usefulness of the femtosecond polaro-interferometry demonstrate for the studies on PALS connected with: (i) the shock ignition concept of the inertial fusion, (ii) the new method of the photoionized plasma creation for astrophysical researches and (iii) generation of high-energy ions for the medical and the radiography applications.
EN
An overview of our recent developments, regarding “water−window” soft X−ray (SXR) microscopy based on a laser−plasma double stream gas puff target sources is presented. The work, presented herein, describes two approaches to SXR microscopy. The first one is a low spatial resolution, achromatic SXR microscopy, employing Wolter type−I objective. The second one is a nanometer spatial resolution SXR microscopy, with the use of a Fresnel zone plate objective, for imaging various objects with quasimonochromatic light, emitted from a double stream gas puff target based short wavelength source. The developments regarding both systems are presented, as well as the possible applications, for which the SXR microscope was already employed. Such compact, table−top size, laboratory type microscopy setups may be employed in the near future for complementary−like studies to other, often used, microscopy techniques.
EN
In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.
EN
The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP): the pulsed return current through the holder of the target and the out flow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe). The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.
5
Content available remote High power laser interaction with single and double layer targets
EN
Results of extended complementary experimental and computer simulation studies of craters formation produced by high power lasers in single and double layer targets are presented. The experimental investigation was carried out using the PALS (Prague Asterix Laser System) facility working with two different laser beam wavelengths: L(lambda)1 = 1.315 žm and L3 = 0.438 žm. Two types of targets made of Al were used: single massive targets and double targets consisting of foils or disks (6 and 11 žm thick for both cases) placed in front of the massive target at distances of 200 and 500 žm. The targets were illuminated by laser energies EL= 130, 240 and 390 J always focused with diameter of 250 žm. In all experiments performed the laser pulse duration was equal to 400 ps. The 3-frame interferometry was employed to investigate the plasma dynamics by means of the electron density distribution time development, as well as the disks and foil fragments velocity measurements. Dimensions and shapes of craters were obtained by crater replica technology and microscopy measurement. Experimental results were complemented by analytical theory and computer simulations to help their interpretation. This way the values of laser energy absorption coefficient, ablation loading efficiency and efficiency of energy transfer, as well as 2-D shock wave generation at the laser-driven macroparticle impact, were obtained from measured craters parameters for both wavelengths of laser radiation. Computer simulations allowed us to obtain an energy absorption balance of incident laser energy for both wavelengths employed.
EN
The present investigation of the processes of ablative plasma generation and formation of craters was carried out at the Prague Asterix Laser System (PALS) iodine laser facility. Experiments were performed with broad range of laser beam intensities (1013-1016 W/cm2), focal spot radii (35–600 mm), and two laser wavelengths (l1 = 1.315 mm and l3 = 0.438 mm). The laser beam was focused on the surface of the massive solid aluminum targets. The main goal of our study was to estimate conversion efficiency of the laser beam energy into the energy of shock waves for different mechanisms of laser beam–target interaction. The expansion of plasma generated as a result of the interaction process was observed by means of the 3-frame interferometry. Dimensions and shapes of the craters were determined using optical microscopy and wax-replica technique.
EN
In the present paper results from our experiments with macroparticles, accelerated at first to high speeds by the PALS iodine laser and subsequently hitting massive targets and creating craters, are presented. The main aim of these investigations concerned the influence of wavelength on the efficiency of macroparticles acceleration and creation of craters. To this end, two different harmonics of the PALS laser beam (l1 = 1.315 mm and l3 = 0.438 mm) and several types of targets (simple massive planar Al targets as well as much more elaborated double targets consisting of 6 mm thick Al foils or disks placed in front of the massive target at the distance of either 200 mm or 500 mm) were used. All these targets were irradiated by the iodine laser beam with its parameters very much the same for both harmonics: the energy of 130 J, the focal spot diameter of 250 mm, and the pulse duration of 400 ps. Velocities of accelerated extracted foil fragments or disks as well as electron density distributions of plasma streams were determined by means of the 3-frame interferometry. Shapes and volumes of craters were obtained employing the crater acetate cellulose replica technology and microscopy measurements. The data from these experiments provided valuable information concerning the ablative plasma generation and crater creation processes.
EN
Experimental and theoretical results of investigations of the iodine laser - Al solid target interactions on the PALS (Prague Asterix Laser System) facility are presented. The experimental investigations of laser interaction with massive Al targets devoted to shock wave propagation in solids and crater formation physics are presented. Experiments were performed with the use of high intensity laser pulses (1013 15 W/cm2) for two laser wavelengths (0.438 mi m and 1.315 mi m) and four laser beam radii (from 35 mi m up to 600 ěm). The crater dimensions were measured using optical microscopy and a wax-replica technique. Plasma expansion out of the target was measured via three-frame interferometry. Theoretical model of the postpulse crater formation by the shock wave propagating and decaying in solids after the end of the laser pulse is presented and applied for the explanation of the results obtained in experiments.
9
Content available remote Study of laser-produced plasma by means of ion diagnostics at the IPPLM, Warsaw.
EN
This paper presents the experimental investigations and analysis of the phenomena in the high-Z plasma produced by a high power nanosecond laser beam with power density up to 10/sup 15/ W/cm/sup 2/. These studies were directed towards determination of collisional and anomalous processes occurring in such plasma as well as optimization of ion emission from the plasma for possible applications of the laser ion sources.
10
Content available remote Laser-produced plasma for simulation of plasma jets propagation in geoplasma.
EN
This work presents the results concerning dynamics of laser-produced plasma streams from a flat target placed in a transverse magnetic field of B/sub 0/[left angle bracket]0.9 T which were obtained during joint experiments carried out at IPPLM. They include data about main stages of plasma-field interaction, creation of the diamagnetic cavity, plasma deceleration and heating, and transformation of kinetic energy into electromagnetic one. Institution
EN
The paper presents results of studies of the behaviour of a laser-produced plasma in strong external axial and transverse magnetic field of 5-20 T in induction generated from a flat teflon target at the laser power densities of about 10/sup 14/ Wcm/sup -2/. The investigations were carried on by means of three-frame interferometry and a non-contact magnetic probe, the so-called remote magnetic probe (RMP). The dynamics of the process of creation of the diamagnetic cavity, its shape and dimensions have been determined. Also computer simulation of plasma expansion by a 2D MHD code was made.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.