Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  laser typu FEL
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Najpotężniejszy obecnie na świecie, Amerykański Laser Rentgenowski LCLS (Liniac Coherent Ligt Source), czyli liniakowe koherentne źródło światła, działa od roku 2009, jako urządzenie badawcze i użytkowe, i jest dalej rozwijane do postaci LCLS II na terenie narodowego Amerykańskiego laboratorium SLAC przy uniwersytecie Stanforda, zlokalizowanego w miejscowości Menlo Park w Kalifornii. W pewnym sensie LCLS II jest odpowiedzią na budowę maszyny EXFEL. Jest to źródło światła piątej generacji. Przewiduje się uruchomienie EXFEL w latach 2015/16, kosztem znacznie ponad 1 mid Euro. LCLS II, którego projekt rozpoczął się w 2010, będzie uruchomiony w roku 2017. Lasery LCLS, LCLS II oraz EXFEL, wykorzystują metody SASE oraz SEED do generacji światła, i są zasilane liniakami elektronowymi, LCLS ciepłym a EXFEL zimnym, o energii kilkanaście GeV i długości ponad 2 km. Liniak EXFEL wykorzystuje technologię nadprzewodzącą SRF TESLA o częstotliwości 1,3 GHz. Prototypem maszyny EXFEL jest laser FLASH. Laboratorium SLAC korzysta z ponad 50-letniego doświadczenia budowy i eksploatacji liniowych akceleratorów elektronowych. W roku 2009 fragment największego, 3 km elektronowego akceleratora liniowego SLAC został wykorzystany do budowy maszyny LCLS. Dla maszyny LCLS II budowana jest nowa infrastruktura dla dwóch nowych wiązek laserowych. W badaniach i budowie największych światowych akceleratorów liniowych i pierścieniowych oraz laserów FEL takich jak LCLS (Stanford), EXFEL (DESY) i CEBAF (JLab) biorą udział specjaliści i młodzi uczeni z Polski.
EN
The most powerful now in the world, American X-ray laser LCLS (Linac Coherent Light Source), has been working as a research and user facility since 2009. It is further developed to LCLSII machine at the Stanford National Accelerator Laboratory SLAC in Menlo Park CA. In a certain sense, LCLS is a response to the EXFEL machine and a logical extension of LCLS. All these machines are light sources of the fifth generation. EXFE-Lis expected to open user facility in 2016, at a cost of over 1 bil Euro. LCLS II, which design started in 2010, will be operational in 2017. The lasers LCLS, LCLS II and EXFEL use SASE and SEED methods to generate light and are powered by electron liniacs, LCLS by a wrm one, and EXFEL by a cold one. The liniacs have energies approaching 20 GeV, and are around 2 - 3 km in length. EXFEL liniac uses SRF TESLA cavity technology at 1,3GHz. A prototype of EXFEL was FLASH laser. SLAC Laboratory uses effectively over 50-years experience in research, building and exploitation of linear electron accelerators. In 2009, a part of the largest 3 km SLAC liniac was used to build the LCLS machine. For the LCLS II machine a new infrastructure is build for two new laser beams and a number of experimental stations. A number of experts and young researchers from Poland participate in the design, construction and research of the biggest world linear and elliptical accelerators and FEL lasers like LCLS (Stanford), EXFEL (DESY) and CEBAF (JLab), and a few more.
PL
Europejski Laser Rentgenowski EXFEL jest budowany na terenie laboratorium Niemieckiego Synchrotronu Elektronowego DESY w Hamburgu. Przewiduje się jego uruchomienie w latach 2015/16, kosztem ponad 1 mld Euro. Laser, wykorzystujący metodę SASE, zasilany jest liniakiem elektronowym o energii 17,5 GeV i długości ponad 2 km. Liniak wykorzystuje technologię nadprzewodzącą SRF TESLA o częstotliwości 1,3 GHz. Prototypem maszyny EXFEL jest laser FLASH (o długości ok. 200 m), gdzie sprawdzono "proof of principle" i technologie transferowane do większej maszyny. Projekt rozpoczęto w latach dziewięćdziesiątych budową w DESY laboratorium TTF – Tesla Test Facility. Laser EXFEL jest pokłosiem większego (obecnie zarzuconego w Niemczech a podjętego przez środowisko międzynarodowe w postaci projektu ILC) projektu budowy wielkiego zderzacza teraelektronowoltowego TESLA. W budowie i badaniach laserów FLASH i EXFEL biorą udział specjaliści i młodzi uczeni z Polski.
EN
European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5 GeV energy and more than 2 km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in freguency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was started in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.
3
Content available remote Free Electron Laser in Poland
EN
The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, an intense applied research on free electron lasers has been carried out for a couple of years (FEL) [17,18]. Similarly, in this country, free electron laser in Poland - POLFEL [9] is in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority Euro FEL infrastructure collaboration network [6], part of the European Research Area - ERA [2]. The paper discusses: FEL background in Poland as a part of EuroFEL infrastructure, FEL parameters and performance, FEL research and technical program and FEL networking in Europe and worldwide. Emphasis is put on the usage of superconducting RF TESLA technology and ties linking Polfel and the European X-Ray Free Electron Laser. The Polfel team of researchers is now dissipated worldwide among such projects as Flash and E-xfel in Desy, Cebaf in JLab, Alba in Barcelona, Elettra in Trieste, ILC in Fermilb, LCLS in SLAC. Polfel creates an unique, but quite transient chance to gather and solidly accumulate for a long time this expertise in this country again.
PL
Rozwój techniki akceleratorowej w Polsce jest ściśle powiązany ze współpracą ze specjalistycznymi ośrodkami dysponującymi akceleratorami na świecie. gdzie jest generowana odpowiednia wiedza pozwalająca na budowę dużych i nowoczesnych maszyn. Są to przedsięwzięcia relatywnie kosztowne o charakterze interdyscyplinarnym. Znaczna część z nich jest finansowana lokalnie. Tylko największe maszyny są finansowane wspólnie przez wiele państw jak LHC w Cernie. ILC w Fermilabie i E-XFEL w Desy. Podobnie musi być w Polsce, gdzie trwa obecnie kampania naukowa i polityczna na rzecz budowy dwóch dużych maszyn: Polskiego Synchrotronu w Krakowie oraz Polskiego lasera na swobodnych elektronach POLFEL w Świerku. Wokół tych dwóch bardzo dużych projektów naukowo-technicznych realizowanych jest kilkadziesiąt mniejszych.
EN
The development of accelerator technology in Poland is strictly combined with the cooperation with specialised accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed by the local resources. Only the biggest machines are financed commonly by many nations like: LHC in Cern, ILC in Fermi Lab, E-XFEL in Desy. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway in behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.
EN
The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.