Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  land-cover classification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Precise and timely land-cover identification plays an important role in effective environmental monitoring and land management. This study compares theperformanceoffive machine-learningclassifiers –supportvectormachine (SVM), decision tree (DT), normal Bayes (NB), random forest (RF), and k-nearest neighbor (k-NN) – in the land-cover mapping of the Agro Nocerino Sarnese area (Southern Italy) using high-resolution SPOT 7 pan-sharpened multispectral images with a pixel size of 1.5 m × 1.5 m. The data set consisted of blue, green, red, and near-infrared (NIR) bands and was processed with Orfeo ToolBox (OTB) software. Two data sets were analyzed: DS-3B (which included only the visible bands [blue, green, and red]), and DS-4B (which also included the NIR band). A comparison of the classifiers’ performances across various land-cover classes was conducted in order to assess their respective classification accuracy. The results showed that SVM and k-NN achieved the highest overall accuracy levels (93% and 92%, respectively) using only the visible bands, whereas the decision tree classifier performed best when the NIR band was included. Random forest achieved excellent accuracy in vegetation classes (88–99%) but struggled with misclassifications in bare soil and man-made classes such as buildings and roads. These results emphasized the significant impact of data set characteristics on classifier performance as well as the importance of band selection and pan-sharpening techniques in high-resolution land-cover mapping.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.