Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  laminaty metalowo-włókniste
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The natural frequencies and mode shapes of fibre metal laminates (FMLs) were numerically investigated and validated using commercially available finite element analysis software (ANSYS). Various grades of GLARE and FML were considered for free vibration analysis, and the effect of the central metal layer and aspect ratios on the frequencies were analysed for simply supported, clamped edge conditions. The obtained fundamental frequencies, natural frequencies and mode shapes comply with the available literature. The effect of the outermost metal layer on the natural frequencies was also investigated for various combinations of edge conditions. The obtained results indicate that there is a significant effect of the central and outermost metal layer on the natural frequencies, irrespective of the edge conditions and aspect (width/length) ratios.
EN
The current work is devoted to the determination of dispersion curves for elastic wave modes. The studied elastic waves propagate across metal-fiber hybrid composites. In order to solve the problem, special software has been developed with the use of C++. This software works with the MS Windows operating system and the proposed solution is based on the multi-threading mechanism. It makes possible to significantly speed up the calculations. The relatively new approach is used namely the stiffness matrix method. At the very beginning, the dispersion curves are determined for the traditional composite materials of cross-ply configuration, for which the layers are made of glass fiber/epoxy resin and carbon fiber/epoxy resin. The impact of the total number of layers on the dispersion curves is investigated. Next, the influence of the thickness of the layers, which are made of aluminum alloy, on the dispersion characteristic is studied. In the second case, it is assumed that the total thickness of the composite material wall for all cases is identical.
EN
The study describes the results of tensile strength tests of hybrid laminates composed of thin titanium layers and glass and carbon fibre reinforced polymer layers. The tests were conducted at -120, RT (23°C) and 85°C. The tests allowed the basic mechanical properties to be determined, including: tensile strength, Young's modulus and strain at failure. The tests proved that as the temperature decreases, the strength of titanium/glass fibre reinforced polymers increases by 21 to 26% depending on the configuration, while the strength of titanium/carbon fibre reinforced polymers decreases by 6 to 8%. The Young's modulus values for all the tested systems increase by 3 to 7% as the temperature drops. A different tendency was observed regarding the strain at failure which decreases by 1 to 11% as the temperature drops. The tensile strength test results for the increased temperature (85°C) differ only slightly from those obtained at room temperature. The macroscopic analysis of the failed specimens revealed the existence of characteristic, prevailing forms of failure, namely breaking fibres, matrix cracking, including delamination and permanent deformation of the titanium layers.
PL
Przedstawiono wyniki badań wytrzymałości na rozciąganie laminatów hybrydowych składających się z cienkich warstw tytanowych oraz warstw kompozytów polimerowych wzmacnianych włóknami szklanymi oraz węglowymi. Próby przeprowadzono w temperaturze -120, RT (23°C) oraz 85°C. Podczas badań wyznaczono podstawowe właściwości mechaniczne, takie jak: wytrzymałość na rozciąganie, moduł Younga oraz odkształcenie przy zniszczeniu. Przeprowadzone próby wykazały, że wraz ze spadkiem temperatury wytrzymałość laminatów wzmacnianych włóknem szklanym wzrasta od 21 do 26% w zależności od układu, natomiast wytrzymałość laminatów wzmacnianych włóknem węglowym spada od 6 do 8% wraz ze spadkiem temperatury. Wartości modułu Younga dla wszystkich badanych układów wzrastają od 3 do 7% wraz ze spadkiem temperatury badania. Odmienną tendencję odnotowano dla wartości odkształcenia przy zniszczeniu, która zmniejsza się wraz ze spadkiem temperatury od 1 do 11%. Wyniki badań wytrzymałości na rozciąganie uzyskane dla temperatury podwyższonej (85°C) nie różnią się znacząco od wyników uzyskanych w temperaturze odniesienia (RT). Makroskopowa analiza zniszczonych próbek wykazała występowanie charakterystycznych, dominujących form zniszczenia w postaci zerwania włókien, pękania osnowy, w tym delaminacji oraz trwałych deformacji blach tytanowych.
4
Content available remote Assessment methods of mechanical properties of composite materials
EN
The paper deals with a specific kind of imperfection in multilayered composite structures as thickness deviation. During manufacturing process the layers are laminated together with resin. Lack of accuracy or some errors during autoclaving process could contribute to thickness deviation when thin layer of resin remains between plies. This is particularly important in the case of hybrid laminates as Fibre Metal Laminates (FML). Therefore, the aim of this work is to determine the impact of thickness imperfection on the variation of effective mechanical properties of FML thin-walled panels. Two methods have been considered in the study: assumption of additional resin/matrix layer in a stacking sequence and a correction of fibre volume fraction in composite layers. A full 3-2 FML lay-up has been analyzed using Classical Lamination Plate Theory with connection to two micromechanical approaches: analytical (Rule of Mixture) and numerical (Finite Element Method). Results of calculations were verified by conducted experimental tests.
5
Content available remote Comparative analysis of failure of Al/GFRP laminates after tensile strength test
EN
Fibre-metal laminates are modern composite materials that are replacing certain metal elements in aircraft structures. Such hybrid materials have synergic properties determined by their component properties and configuration. This article presents studies of GLARE laminates consisting of aluminium and glass-epoxy composite sheets manufactured using the autoclave method. 2024T3 aluminium alloy sheets were subjected to chromic acid anodising (CAA) and sulphuric acid anodising (SAA). Three different lay-up configurations of the composite layers were used in the structure of 2/1 laminates: [0°], [0/90°] and [±45°]. Tensile strength studies were conducted using a strength testing machine (MTS 322) in accordance with the ASTM standard for composite materials. Microstructural and fractographic observations were conducted using an optical microscope and a scanning electron microscope (Zeiss Ultra Plus, NovaNanoSEM 450). The tensile strength test did not result in cracking of the metal plies; it was the composite that underwent degradation. After the test, the samples were found to have undergone deformation and delamination as a result of the tension; the laminates with an SAA layer were more greatly affected. The plastic range properties are determined by the fibre configuration. The metal/composite adhesion force was higher than the cohesive force in the composite for all the configurations. The degradation mechanism of the laminate structure during uniaxial tensile strength tests does not depend on the type of anodised layer. The configuration of the fibrous composite layers affects the propagation of cracks in the composite area. Transverse cracking of the fibres, cracking of the anodised layer and decohesion of the matrix with tearing-out of fibres were observed in all the cases. The surface morphology of the fracture caused by the decohesion of the composite in an FML is of the same nature as the fracture in the composite material.
PL
Laminaty metalowo-włókniste to współczesne materiały złożone zastępujące niektóre elementy metalowe w konstrukcjach lotniczych. Taki materiał hybrydowy posiada właściwości synergiczne, determinowane właściwościami komponentów i ich konfiguracją. W niniejszej pracy przedstawiono badania laminatów typu Glare, składających się z blach aluminium i kompozytu epoksydowo-szklanego, wytworzonych metodą autoklawową. Blachy ze stopu aluminium gat. 2024T3 anodowano w roztworze kwasu chromowego (CAA) oraz w roztworze kwasu siarkowego (SAA). W budowie laminatów 2/1 wykorzystane zostały trzy różne konfiguracje ułożenia warstw kompozytu: [0°], [0/90°] oraz [±45°]. Badania wytrzymałości na rozciąganie zostały przeprowadzone przy użyciu maszyny wytrzymałościowej (MTS 322) zgodnie z normą ASTM dla materiałów kompozytowych. Obserwacje mikrostrukturalne i fraktograficzne zostały przeprowadzone przy użyciu mikroskopu optycznego i skaningowej mikroskopii elektronowej (Zeiss Ultra Plus, NovaNanoSEM 450). W teście rozciągania nie nastąpiło pęknięcie warstw metalu, degradacji uległ kompozyt. Po zakończeniu testu wystąpiła deformacja próbek i ich rozwarstwienie na skutek naprężenia, silniejszy efekt zaobserwowano w laminatach z warstwą SAA. O właściwościach w zakresie plastycznym decyduje konfiguracja włókien. We wszystkich układach siła adhezji metal/kompozyt przewyższała siłę kohezji w kompozycie. Mechanizm degradacji struktury laminatów podczas jednoosiowego rozciągania nie zależy od typu warstwy anodowej. Konfiguracja warstw kompozytu włóknistego wpływa na propagację pęknięć w obszarze kompozytu. We wszystkich przypadkach nastąpiło pękanie poprzeczne włókien, pękanie warstwy anodowej oraz dekohezja osnowy z odrywaniem włókien. Morfologia powierzchni przełomu powstałego w wyniku dekohezji kompozytu w FML ma taki sam charakter jak przełom w materiale kompozytowym.
6
Content available remote The issue of residual strength tests on thin fibre metal laminates
EN
Modern aircraft structures contain sheathing elements which are supposed to not only carry loads, e.g static ones, but also at the same time possess resistance to corrosion or dynamic impact. As a consequence, new kinds of hybrid materials, e.g fibre metal laminates, were created. They combine the mechanical and physical properties of various materials. Until now, the most common and widespread structures are GLARE® laminates (aluminium/glass-epoxy composites), characterised by high fatigue and static properties, as well as by impact resistance. The concurrent influence of many negative factors during exploitation causes a gradual decrease in the functional properties of these materials. One of the factors affecting e.g. static strength is low-velocity impact. Low-velocity impact often leads to macroscopically invisible damage of the composite structure, with delaminations and ply cracking occurring during impact energy absorption. Fibre metal laminates possess a much better dynamic load-carrying capacity, limiting negative ply cracking in the composite and absorbing some impact energy through elastic-plastic deformation. In order to assess the influence of low-velocity impact on the residual strength of composite materials, Compression After Impact (CAI) tests are carried out. Normalised CAI testing is used for classic 5 mm thick composite structures. However, as the literature suggests, it is not effective in the case of fibre metal laminates, particularly those with a thickness more then 1.1 mm. The work presents an analysis of the possibility of conducting an effective (ensuring valid assessment of strength reduction) CAI test for 1.5 mm thick FML panels after dynamic impact. An alternative workstation construction was proposed, and simulations and experimental verifications were conducted. It was observed that a solution based on the ASTM standard does not apply to thin FML laminated panels. Deformation of the specimen occurs in areas located far from the impact site. As a consequence, the strength values differ neither for plates with impact-induced damage nor ones without it. The proposed alternative holder construction for compression after impact of thin fibre metal laminates plates testing eliminates premature material damage. On the basis of the conducted numerical simulations, it was stated that using the ASTM holder for CAI test leads to the occurrence of the first buckling mode in the damage area, with stress concentration in its vicinity. Such a form of deformation may allow one to correctly assess the influence of impact damage on FML composites.
PL
Współczesne struktury lotnicze zawierają w sobie elementy pokryciowe, które mają za zadanie przenosić obciążenia m.in. statyczne, a przy tym być odporne na korozję czy uderzenia dynamiczne (impact). W związku z tym opracowano nowoczesne materiały hybrydowe, m.in. laminaty metalowo-włókniste, łączące w sobie właściwości różnych materiałów pod względem właściwości fizycznych i mechanicznych. Najpowszechniej znane i stosowane są dotychczas laminaty typu GLARE® (aluminium/kompozyt epoksydowo-szklany), które charakteryzują się wysokimi właściwościami np. zmęczeniowymi, statycznymi i odpornością na uderzenia typu impact. Jednoczesne oddziaływanie wielu negatywnych czynników w czasie eksploatacji sprawia, że parametry użytkowe tych materiałów stopniowo maleją. Jednym z czynników obniżających np. wytrzymałość statyczną jest oddziaływanie dynamiczne o niskiej prędkości. Uderzenia typu impact o niskiej prędkości często powoduje niewidoczne makroskopowo uszkodzenie struktury kompozytowej, która, absorbując energię uderzenia, ulega licznym rozwarstwieniom i pęknięciom osnowy. Laminaty metalowo-włókniste znacznie lepiej przenoszą obciążenia dynamiczne, ograniczając niekorzystne powstawanie pęknięć osnowy kompozytu, m.in. przez absorpcję części energii uderzenia na odkształcenie sprężysto-plastyczne. W celu oceny wpływu uderzeń typu impact na wytrzymałość materiałów, np. kompozytowych, prowadzi się badania m.in. ściskania osiowego płyt po uderzeniu (Compression After Impact). Znormalizowana próba CAI dotyczy klasycznych struktur kompozytowych o grubości około 5 mm. Jak wynika z literatury, nie jest jednak skuteczna w przypadku laminatów metalowo-włóknistych, szczególnie tych o grubościach od 1,1 mm. W pracy przedstawiono analizę możliwości prowadzenia efektywnej (zapewniającej prawidłową ocenę redukcji wytrzymałości) próby ściskania osiowego płyt FML o grubości 1,5 mm po uderzeniach dynamicznych. Zaproponowano własną konstrukcję stanowiska do badań oraz przeprowadzono symulację i weryfikację eksperymentalną. Zauważono, że rozwiązanie opracowane w normie ASTM nie sprawdza się w przypadku cienkich płyt FML. Następuje odkształcenie próbki w strefie oddalonej od miejsca uderzenia. W rezultacie wartości wytrzymałości nie różnią się względem siebie dla płyt bez uderzenia i po uderzeniu. Zaproponowana alternatywna konstrukcja uchwytu do realizacji testów CAI laminatów metalowo-włóknistych po uderzeniach dynamicznych eliminuje przedwczesne uszkodzenie materiału. Na podstawie przeprowadzonych symulacji numerycznych stwierdzono, że zastosowanie tego uchwytu prowadzi do wyboczenia materiału (pierwsza postać wyboczenia) w obszarze uszkodzenia, koncentrując naprężenia w jego okolicy. Taka forma odkształcenia może pozwolić prawidłowo ocenić wpływ uszkodzeń po uderzeniach na wytrzymałość kompozytów typu FML.
EN
The goal of this paper is to analyse damage in Fibre Metal Laminates, containing glass and carbon fibre reinforced composites, subjected to low-velocity impact. The analysis is based on the assessment of force-displacement characteristics in the aspect of energy absorption connected with initiation and damage propagation in the examined laminate. On the basis of experimental research and result analysis, it may be stated that: (1) Fibre Metal Laminates with glass and carbon fibres are characterized by higher impact resistance in comparison to classic composite structures. This assumption is proved by higher maximum load levels, as well as by higher aggregate absorbed impact energy. Moreover, the aluminium layers can have a protective function as they absorb a significant amount of dynamic impact energy and lower the scope of damage in the laminate. (2) Fibre Metal Laminates with carbon fibres show greater susceptibility to damage resulting from dynamic impact than laminates with glass fibres. The main factors influencing the impact resistance of the examined materials are the properties of particular components, especially the composite reinforcing fibres. Carbon fibres show a relatively small deformation range until failureand are brittle in comprison to glass ones, which raises their susceptibility to damage resulting from dynamic impact. (3) Force-displacement (F-d) analysis, aggregate absorbed impact energy (Ea) as well as initiation energy (Ei) and damage propagation (Ep) may represent some of the more vital criteria of composite materials assessment in terms of their resistance to low-velocity impact.
PL
Prezentowana praca ma na celu analizę zniszczenia laminatów metalowo-włóknistych zawierających kompozyt wzmacniany włóknem szklanym i węglowym poddanych uderzeniom dynamicznym poprzez ocenę charakterystyk siła-przemieszczenie w aspekcie absorbowanej energii związanej z inicjacją i propagacją zniszczenia lamiantu. Na podstawie badań eksperymentalnych oraz analizy wyników można stwierdzić że: (1) Laminaty metalowo-włókniste z włóknami szklanymi i węglowymi odznaczają się wyższą odpornością na uderzenia dynamiczne w porównaniu do klasycznych struktur kompozytowych. Świadczą o tym wyższe poziomy maksymalnego obciążenia oraz sumarycznej zaabsorbowanej energii uderzenia. Ponadto warstwy aluminium mogą pełnić rolę ochronną absorbując w znacznym stopniu energię uderzenia dynamicznego i zmniejszając ogólny poziom zniszczenia laminatu. (2) Większą podatność na zniszczenie poprzez uderzenia dynamiczne wykazują laminaty metalowo-włókniste z włóknami węglowymi w porównaniu do laminatów z włóknami szklanymi. Decydującym czynnikiem o odporności na uderzenie badanych materiałów jest charakterystyka poszczególnych komponentów, w szczególności włókien wzmacniających kompozyt. Włókna węglowe wykazują stosunkowo małe odkształcenie do zniszczenia i są kruche w porównaniu do szklanych, co zwiększa ich podatności na zniszczenie poprzez uderzenia dynamiczne (3) Analiza krzywych siła-przemieszczenia (F-d), sumaryczna zaab-sorbowana energia uderzenia (Ea) oraz energia inicjacji (Ei) i propagacji (Ep) zniszczenia mogą stanowić jedno z istotnych kryteriów oceny odporności materiałów kompozytowych na uderzenia dynamiczne o niskich prędkościach.
8
Content available remote The mechanical properties and failure analysis of selected Fiber Metal Laminates
EN
Composite materials have developed in recent years. Fiber reinforced polymer composites (laminates) and aluminum alloys currently constitute the most dominant materials applied in the aerospace industry. The paper presents the tensile properties of selected fiber metal laminates regarding the content of structural components. Additionally, the failure characteristics of the tested specimens were determined. The hybrid systems (Fiber Metal Laminates) in this study were based on the 2024-T3 aluminum alloy and glass and carbon fibers reinforced polymers. The tensile properties were determined according to ASTM D 3039. The strain gauge Vishay CEA-06-125UT-350 was employed to measure the strain. The results have shown that the tensile properties of both tested types of laminates depend on the metal volume fraction factor. The investigated specimens showed a bilinear character in the stress-strain curves. The findings imply that the tensile properties of fiber metal laminates depend on the type of composite reinforcement, metal volume contribution and fibers orientation. It can be noted that with a decrease in the metal volume fraction and a layer orientation change from 0 by 0/90 up to 45 results in a decrease in the Young's modulus of the tested laminates. Several fracture modes were identified depending on the lay-up configuration and type of reinforcing fibers. Use of the metal volume fraction approach in predicting the mechanical properties is appropriate for both carbon and glass fiber reinforced fiber metal laminates.
PL
Kompozyty polimerowe wzmacniane włóknami są od kilku dekad stosowane z powodzeniem jako materiały konstrukcyjne w przemyśle lotniczym. Nową generację materiałów o dużym potencjale rozwoju stanowią laminaty metalowo-włókniste. Laminaty tego typu poprzez swoją hybrydową konstrukcję łączą korzystne właściwości polimerowych laminatów kompozytowych wzmacnianych włóknami oraz lekkich stopów aluminium tradycyjnie stosowanych w przemyśle lotniczym. W pracy przedstawiono wyniki badań wytrzymałości na rozciąganie laminatów metalowo-włóknistych zawierających warstwy kompozytowe wzmacniane włóknami węglowymi oraz szklanymi w układzie jednokierunkowym. Badane były laminaty z różną orientacją warstw kompozytowych. Testy wytrzymałościowe przeprowadzono zgodnie z normą ASTM D 3039 na prostopadłościennych próbkach o długości 180 mm i szerokości 15 mm dla włókien ułożonych w kierunku (0) i 20 mm dla włókien ułożonych w kierunku (0/90 i ±45) w warstwie kompozytowej laminatu. Dla badanych materiałów uzyskano bilinearne charakterystyki naprężeniowo odkształceniowe oraz silną zależność pomiędzy kierunkiem ułożenia włókien w warstwie kompozytowej a wartością wytrzymałości na rozciąganie oraz sztywności. Wykazano liniową zależność pomiędzy objętościową zawartością metalu a wytrzymałością na rozciąganie i sztywnością dla laminatów wzmacnianych zarówno włóknami szklanymi, jak i węglowymi. Dodatkowo dokonano analizy zniszczenia badanych próbek w mezoskali z użyciem mikroskopu optycznego (Nikon SMZ1500). Zaobserwowano istotne różnice w charakterach zniszczenia warstw kompozytowych wzmacnianych włóknami węglowymi oraz szklanymi, co jednak nie wpływa znacząco na opisane powyżej zależności i przewidywanie właściwości mechanicznych.
EN
During the last few years, many scientists and industries have become interested in developing new materials which would maintain good mechanical properties and low density comparable with aluminum alloys. This can be observed predominantly in the aircraft or aerospace industry. Fiber metal laminates (FML) are a new kind of composite, particularly the Glare® type laminate, which consists of aluminum and a glass/epoxy composite. FML combine both the good characteristics of metal such as ductility and durability with the benefits of fiber composite materials such as high specific strength, high specific stiffness, good corrosion resistance and fatigue resistance. In this paper, an FML consisting of aluminum and glass fiber/epoxy layers has been introduced. The FML were produced by the autoclave technique. The aluminum sheets were special prepared with chromic acid and sulphuric acid aluminum anodizing. Two combinations of fiber configuration were selected: Al/[0]/Al and Al[0/90]/Al. The structure characterization after bending tests is shown and discussed. Microstructural analysis has been carried out using an optical microscope. The three point.bending tests were conducted according to standard specifications. Preliminary studies have shown that the metal layers in the laminates and the composite polymer layer, particularly in the bend area in the laminate, have a significant impact on the nature of the damage. Laminate destruction indicates the complexity of the degradation process of these materials. The orientation of the reinforcing fibers has an influence on the degree of destruction of the laminate structure which may have a decisive effect on the ability of forming laminates. An important factor influencing the properties of the laminate as a whole is to provide high adhesive properties of the composite-metal connections.
PL
W ciągu ostatnich kilkunastu lat zarówno wielu naukowców, jak i branże przemysłu zainteresowały się opracowaniem nowych materiałów, które posiadałyby dobre właściwości mechaniczne i małą gęstość, porównywalne ze stopami aluminium. W szczególności można zaobserwować to w przemyśle lotniczym i kosmicznym. Laminaty metalowo-włókniste ze względu na swoje wysokie właściwości mechaniczne znalazły zastosowanie właśnie w przemyśle lotniczym; dotyczy to zwłaszcza laminatów typu Glare®. Posiadają one, tak jak metale, zespół dobrych charakterystyk, takich jak plastyczność i trwałość. Korzyści płynące z włókien kompozytowych to między innymi wysoka wytrzymałość, wysoka sztywność, odporność na korozję i odporność na zmęczenie mechaniczne. W artykule przedstawiona została charakterystyka laminatów metalowo-włóknistych na bazie aluminium i włókien szklanych po badaniach wytrzymałości na zginanie. Laminaty zostały wytworzone metodą autoklawową. Zastosowano dwa typy anodowania aluminium w kwasie chromowym i w kwasie siarkowym. Wybrano dwie kombinacje ułożenia włókien: Al/[0]/Al i Al[0/90]/Al. Przedstawiono charakterystykę struktury po badaniach wytrzymałości na zginanie za pomocą mikroskopii optycznej. Testy wytrzymałości na zginanie przeprowadzono zgodnie z normą. Wstępne próby wykazały, że istotny wpływ na charakter zniszczenia mają warstwy metalowe w laminatach i warstwy kompozytu polimerowego zwłaszcza w miejscu zgięcia laminatu. Zniszczenie laminatów wskazuje na złożoność procesu degradacji tych materiałów. Orientacja włókien wzmacniających ma wpływ na wielkość zniszczenia struktury laminatu, które może mieć decydujący wpływ na zdolność do formowania laminatów. Ważnym czynnikiem wpływającym na właściwości laminatów jako całości jest zapewnienie wysokiej wytrzymałości adhezyjnych połączeń metalowo-kompozytowych.
10
Content available remote Badania hybrydowych kompozytów warstwowych typu FML (Fibre Metal Laminate)
EN
Laminar hybrid composites sort FML are laminates made of adhesively bonded thin metal sheets and layers of polymer composite reinforced by fibers. These materials show an intermediate property between metals and polymer composite reinforced by fibers. Limited application of these new materials is motivated by narrow expertise of their strength. The purpose of the research was to estimate the failure that might influence the FML material loading method. The numerical calculations were provided in this experiment with the elastic-plastic properties of metal component and orthotropic of composite components. It was pointed out that laminar hybrid composite may be damaged due to not only the strength exceed of components, but also as results of delamination because of the adhesive bonds failure.
PL
W pracy przedstawiono wyniki badań wybranych właściwości wytrzymałościowych hybrydowych laminatów FML nowej generacji na bazie tytanu i kompozytu o osnowie epoksydowej wzmacnianego włóknem węglowym (HTCL). Charakteryzowano właściwości mechaniczne laminatów HTCL (wytrzymałość na rozciąganie, moduł Younga) i proces niszczenia w zależności od konfiguracji warstw w materiale kompozytowym. Laminaty HTCL charakteryzują się wysoką wytrzymałością na rozciąganie oraz modułem Younga. W porównaniu z tytanem otrzymano około 2,5-krotny wzrost wytrzymałości na rozciąganie kompozytu HTCL [0] oraz około 2-krotny w przypadku HTCL [0/90]. Głównymi czynnikami wpływającymi na właściwości laminatów HTCL są rodzaj komponentów oraz ukierunkowanie włókien wzmacniających. Zniszczenie laminatów HTCL wskazuje na złożoność procesu degradacji tych materiałów. Charakter zniszczenia w warstwach kompozytu polimerowego jest zbliżony do typowego dla tego rodzaju materiałów. Uzyskane kompozyty HTCL stanowią grupę materiałów hybrydowych o potencjalnym zastosowaniu m.in. w konstrukcjach lotniczych, gdzie mogą zastępować stopy metali czy tradycyjne kompozyty polimerowe wzmacniane włóknami.
EN
The article presents a study of selected mechanical properties of the nextgeneration of hybrid FML-laminates based on titanium and composites with carbon fiber reinforced epoxy (HTCL). The configuration of the layers in the composite material determines the mechanical properties of HTCL laminates (tensile strength, Young's modulus) and the destruction process. HTCL laminates are characterized by high tensile strength and Young’s modules. In comparison to titanium, about a 2.5 times increase in tensile strength for composite HTCL [0] was obtained and approximately 2-fold in the case of HTCL [0/90]. The main factors that influence the properties of HTCL laminates are the type of individual components – titanium, and carbon-epoxy composites and the orientation of the reinforcing fibers. The failure of HTCL laminates indicates the complexity process of degradation of these materials. The nature of damage in the polymer composite layers is similar to that typical for this type of materials. HTCL is a group of hybrid materials with potential uses including aircraft, often replacing traditional metal alloys or polymer composites reinforced with fibers.
12
Content available remote Low velocity impact resistance of aluminium/carbon-epoxy fiber metal laminates
EN
Fiber metal laminates are a new kind of hybrid materials. There are good candidates for advanced aerospace structural applications due to their high specific mechanical properties. The study researches the resistance to low-velocity impact of hybrid laminates based on aluminum alloys and a carbon/epoxy composite (Al/CFRP). These are completely new materials which have higher strength properties compared to other materials of this type (GLARE, ARALL), high fatigue strength, low weight, etc. The tested laminates were prepared by the autoclave method, which provides the best possible and repeatable quality of the received components. The laminates were analysed in terms of a comparison of their impact resistance according to different layer configurations and different energy levels. The laminates response to low velocity impact using a hemispherical tipped impactor (diameter 12.7 mm) were analyzed. The variation of the impact load as a function of force-time for different layer systems at each energy level was determined. After the tests, the damage zone was evaluated by using ultrasonic and image analysis methods. On this basis the dependencies of the damage zone area and maximum depth of the deformation depending on the layer configurations and energy level were determined. It was noted that Al/CFRP laminates are innovative materials characterized by high impact damage resistance (at low-velocity) because of the superior properties of both metals and fibrous composite materials with strong adhesion bonding. There is a combination of high stiffness and strength from the carbon/epoxy composite layers and good mechanical, ductile properties from aluminum. Generally, specific parameters such as incipient load (Pi), peek load Pm, maximum depth and damage area increased with impact energy. For lower impact energies (up to 10 J) and the first stage of the impact process, minor matrix cracking and delamination in the polymer composite and at the aluminum/composite interface may be observed. However, as the impact energy increased, fiber failures were observed to be the dominant damage mode. The first crack of FMLs (on the back side) was connected with the fiber directions in the finally layer of the carbon epoxy composite. The ply configuration (fiber directions) in Al/CFRP laminates has been particularly important for their impact resistance. The FML with (0/90) and ((± 45) ply sequences in the carbon fiber reinforced composite have the best behavior followed by the (0) configuration.
PL
Laminaty metalowo-włókniste (FML) są nowoczesnymi materiałami hybrydowymi mającymi potencjalnie szerokie zastosowanie w technice lotniczej ze względu na wysokie właściwości mechaniczne (szczególnie wytrzymałość zmęczeniową, odporność na uderzenia). W pracy scharakteryzowano odporność na uderzenia (impact) przy niskiej prędkości laminatów metalowo-włóknistych na bazie stopu aluminium i kompozytu węglowo-epoksydowego (Al/CFRP). Materiały te, będące w sferze zainteresowań przemysłu lotniczego, powstały na podstawie prowadzonych badań i zastosowań innych laminatów FML (typu GLARE oraz ARALL). Badane laminaty Al/CFRP wytworzono metodą autoklawową, zapewniającą możliwie najwyższą i powtarzalną jakość otrzymanych elementów. Laminaty charakteryzowano pod kątem porównania ich odporność na impact w zależności od konfiguracji warstw [(0), (0/90), (± 45)] i energii uderzenia (10 J, 20 J, 25 J). Zastosowano urządzenie typu drop-weight oraz półsferyczny impactor o średnicy 12,7 mm (0,5"). Wyznaczono przebieg siły uderzenia w czasie, siłę maksymalną oraz siłę, przy jakiej występuje początek procesu zniszczenia materiału (Pi). Ocenie poddano także strefę zniszczenia metodami ultradźwiękowymi oraz technikami analizy obrazu. Określono obszar zniszczenia oraz głębokość odkształcenia w stosunku od układu warstw i energii uderzenia. Odnotowano, że laminaty Al/CFRP charakteryzują się wysoką odpornością na impact (przy niskich prędkościach uderzenia) związaną z właściwościami poszczególnych komponentów: sprężysto-plastycznego metalu i wysoką sztywnością kompozytu epoksydowo-węglowego. Wartości siły maksymalnej, inicjacji uszkodzenia, maksymalnego odkształcenia i strefy zniszczenia wzrastają wraz ze wzrostem energii uderzenia. Przy energiach nieprzekraczających 10 J odnotowano delaminacje pomiędzy aluminium i kompozytem oraz pękanie osnowy kompozytu polimerowego. Kierunek pękania badanego laminatu FML jest ściśle związany z kierunkiem ułożenia warstw w kompozycie polimerowym. Konfiguracja warstw kompozytu w laminacie Al/CFRP ma bezpośrednie znaczenie na odporność na impact. Laminaty (0/90) i (š45) charakteryzują się wyższą odpornością na impact w porównaniu do laminatów o jednokierunkowym ułożeniu warstw (0) w kompozycie epoksydowo-węglowym.
EN
Fibre Metal Laminates (FML) are hybrid materials, consisting of alternating layers of thin metal sheets and composite layers. FML possess superior properties of both metals and fibrous composite materials. Fibre Metal Laminates are characterized by excellent damage tolerance: fatigue and impact and characteristics, low density, corrosion and fire resistance. Glare as a type of FML are composites consisting of thin aluminium layers and glass fiber reinforced epoxy composites. The most common method used to produce FML including Glare is autoclave processing (under relatively high pressure, vacuum, elevated temperature). The first large scale application of Glare laminates is the fuselage and leading edges of the vertical and horizontal tail planes of the Airbus A-380 aircraft. Current and future research on FML is focused on generating new laminates, for example based on the combination of titanium and magnesium and carbon or glass polymer composites. In this paper, the preliminary studies concerning the manufacturing method and the properties of new generation hybrid composite materials - titanium/glass fibre reinforced laminates (Ti-G) are described. The titanium/glass composites were characterized from the standpoint of their quality (ultrasonic technique- phased array C-scan method), microstructure and selected mechanical properties (tensile strength). The hybrid Ti-G laminates were prepared by stacking alternating layers of commercially pure titanium (grade 2) and R-glass fiber/epoxy prepregs. The lay-up scheme of the Ti-G composites were 2/1 (two layers of titanium sheet and one layer of glass/epoxy prepreg as a [0,90] sequence) and 3/2. It was found that (1) manufacturing Fibre Metal Laminates including Ti-G composites using the autoclave technique is advantageous for the reason of obtaining higher quality and repeatability of the composite structures, (2) the titanium/glass fiber reinforced laminates demonstrated good bonding between the metal and composite layers and homogeneous structure without discontinuities, (3) manufactured Ti-G composites are characterized by high mechanical properties - tensile strength due to the excellent properties of both components, titanium and glass-fibre composite materials, (4) titanium/glass fiber reinforced laminates are new generation hybrid materials, which can be potentially used for composite structures in aerospace.
PL
Laminaty metalowo-włókniste (Fiber Metal Laminates) są materiałami hybrydowymi, składającymi się z kolejno ułożonych (na przemian) warstw metalu i kompozytu polimerowego. Laminaty FML łączą w sobie właściwości zarówno metalu, jak i materiału kompozytowego wzmacnianego włóknami. FML charakteryzują się wysoką tolerancją uszkodzeń, wysoką wytrzymałością zmęczeniową, odpornością na uderzenia, niską gęstością, odpornością na korozję oraz ognioodpornością. Laminaty Glare jako jeden z rodzajów FML stanowią kompozyty składające się z cienkich warstw aluminium oraz kompozytu polimerowego wzmacnianego włókami szklanymi. Najbardziej powszechną metodą wytwarzania laminatów FML, w tym Glare, jest technika autoklawowa (wysokie ciśnienie, podciśnienie, podwyższona temperatura). Pierwsze komercyjne zastosowanie laminatów typu Glare stanowią panele kadłuba oraz krawędzie natarcia pionowego i poziomego usterzenia ogonowego w samolocie Airbus A380. Zarówno aktualne, jak i przyszłe prace naukowo-badawcze w zakresie kompozytów FML ukierunkowane są na wytwarzanie nowej generacji laminatów zawierających tytan lub magnez, z kompozytami polimerowymi wzmacnianymi włóknami węglowymi oraz szklanymi. W pracy przedstawiono wstępne badania dotyczące metody wytwarzania oraz właściwości nowej generacji hybrydowych materiałów kompozytowych typu: tytan/kompozyt polimerowy wzmacniany włóknami szklanymi (Ti-G). Kompozyty tytan/włókna szklane charakteryzowano pod kątem jakości (badania nieniszczące ultradźwiękowe - metoda phased array C-scan), mikrostruktury oraz wybranych właściwości mechanicznych (wytrzymałość na rozciąganie). Hybrydowe laminaty Ti-G stanowiły warstwy czystego technicznie tytanu (garde 2) oraz kompozytu polimerowego wzmacnianego włóknami szklanymi typu R, w układzie 2/1 (dwie warstwy tytanu oraz jedna warstwa kompozytu o ułożeniu warstw [0/90]) oraz w układzie 3/2. Wykazano, że: (1) wytwarzanie kompozytów metalowo-włóknistych (FML) metodą autoklawową jest korzystne ze względu na wysoką jakość i powtarzalność struktur kompozytowych, (2) laminaty tytan/włókna szklane charakteryzują się dobrą przyczepnością metal-kompozyt oraz jednorodną strukturą bez widocznych nieciągłości, (3) wytworzone kompozyty Ti-G odznaczają się wysokimi właściwościami mechanicznymi - wytrzymałością na rozciąganie dzięki wysokim właściwościom poszczególnych komponentów: tytanu i kompozytu polimerowego wzmacnianego włóknami szklanymi, (4) kompozyty tytan/włókna szklane stanowią nową generację materiałów hybrydowych, które mogą znaleźć potencjalne zastosowanie w przemyśle lotniczym.
PL
W pracy przedstawiono badania wybranych właściwości powierzchni metalowych (stopu aluminium 2024T3 oraz czystego technicznie tytanu) w laminatach metalowo-włóknistych FML (Fibre Metal Laminates) - analiza strukturalna, chropowatość, badania energii powierzchniowej - w zależności od zastosowanego sposobu przygotowania powierzchni (anodowanie). Wytworzone warstwy anodowe charakteryzują się jednorodną strukturą, wysoką jakością i bardzo dobrym połączeniem z materiałem podłoża. Wyznaczone właściwości fizykochemiczne (kąt zwilżania oraz swobodna energia powierzchniowa) z zastosowanymi modyfikacjami powierzchni - anodowania, wskazują na możliwość otrzymania warstwy wierzchniej o dobrych właściwościach adhezyjnych w układzie metal/kompozyt polimerowy. Wstępne badania wytrzymałościowe laminatów FML stop aluminium/kompozyt polimerowy oraz ocena adhezji metal/kompozyt potwierdzają uzyskanie laminatów o bardzo dobrych właściwościach adhezyjnych i wytrzymałościowych połączenia poszczególnych komponentów.
EN
The paper presents the results of the studies of metallic surfaces properties (2024 T3 aluminum alloy and technically pure titanium) in Fibre Metal Laminates (the structural analysis, roughness, surface energy measurements) depending on applied method of the surface pretreatment (anodizing). The anodizing layers are characterized a homogeneous structure, high quality and a very good bonding with a substrate material. Particularly the designated physical-chemical properties and the (a contact angle and a surface free energy) with applying surface modifications - anodizing, indicates for possibility to obtain a state of the surface layer with good adhesion properties in the metal/polymer composite configuration. The preliminary strength studies of the FML laminates aluminum alloy polymer composite and the metal/composite adhesion assessment were confirmed by obtaining the laminates with high adhesive properties and strength bonding in particular components.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.