Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  laminar-to-turbulent transition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The new Reynolds-averaged Navier–Stokes (RANS)-based method has been developed for taking into account, in an approximate manner, the effect of external acoustic forcing on laminar-to-turbulent transition in a separated boundary layer. Experimental studies [33] report an increase of the turbulent shear stress within the separated boundary layer under the influence of acoustic forcing. Enhancement of flow disturbances in a reversed flow region was also reported in our experiment. Experimental findings stimulated the development of a reduced-order aero-acoustic strategy. The effect of acoustic forcing was incorporated into the modelling framework of an algebraic intermittency model. The model component was tuned based on our experimental data and validated on reference experiments. The results show the feasibility of the proposed model to simulate flow over a flat plate and the NACA0018 profile.
EN
A 3D Navier-Stokes package for the time-accurate computation of unsteady flows in turbomachines with emphasis on wide applicability, portability and efficiency is presented. The package consists of three components: the elliptic grid generator FRAME, the parallelised implicit Reynolds- and Favre-averaged Navier-Stokes solver PANTA and the post-processor TREAT especially designed for unsteady flow phenomena. The applicability of the package covers both rotor/stator interaction and blade flutter phenomena in multirow and multipassage 2D, Quasi3D and general 3D configurations in a wide range of flow velocities (subsonic, transonic). For turbulent computations either a Low-Reynolds-Number k-" or k-! turbulence model is available. Additionally, an algebraic transition model can be chosen from a variety of different models to enhance the accuracy of prediction for transitional flow phenomena. A description of the underlying algorithms and numerical methods as well as the main features and characteristics of each of the three components is given. Furthermore, selected examples of typical turbomachinery applications are shown to demonstrate these features.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.