Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lacunarity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Rachunek fraktalny jest jedną z szybko rozwijających się dziedzin matematyki i znajduje zastosowanie między innymi w opisie struktur porowych. Stanowi nowe spojrzenie na ich nieregularność i chaotyczność. Aby mógł być stosowanym poprawnie, powinien być wspomagany analizą błędu. W artykule przedstawiono i zweryfikowano niedoskonałości związane z analizą obrazu oraz możliwe sposoby ich korekcji. Jednym z kluczowych aspektów podczas takich badań jest miejsce oraz ilość wykonanych zdjęć. Sfotografowano powiększony obraz gruboziarnistego piaskowca w płytce cienkiej, uzyskany przy użyciu lupy binokularnej. Następnie wykonane zdjęcia zostały połączone w jedno. Otrzymane rozkłady parametrów fraktalnych pokazują ich zmienność oraz potwierdzają, że poprawnie wykonana seria zdjęć struktury porowej powinna zawierać zarówno obszary bardziej, jak i mniej porowate, a ich ilość należy dostosować do próbki. Zbadano wpływ rozdzielczości zdjęcia na wartości wymiaru fraktalnego oraz lakunarności. Wykorzystano zdjęcia wapienia wykonane w SEM z użyciem elektronów wstecznie rozproszonych w zakresie powiększeń 120–2000×. Dodatkowo badaniu poddany został pojedynczy por. Otrzymane wyniki wskazują, że dla dużego zakresu powiększeń wartości wymiaru fraktalnego są zbliżone, natomiast lakunarność każdorazowo się zmienia. Jest to związane ze zmieniającą się jednorodnością zdjęcia. Analizie poddana została również metodyka wyznaczania rozkładu przestrzennego parametrów fraktalnych w oparciu o binaryzację. Stosowane metody zakładają, że binaryzacja następuje przed lub po podziale zdjęcia na mniejsze prostokąty, z których wyznaczane są wartości wymiaru fraktalnego oraz lakunarności. Indywidualna binaryzacja, pomimo czasochłonności, zapewnia lepsze wyniki, które są bardziej zbliżone do rzeczywistości. Nie jest możliwe zdefiniowanie jednej, słusznej metodyki do eliminowania błędów. Przedstawiono zbiór wskazówek, które mogą posłużyć do udoskonalenia wyników w przyszłej analizie obrazu struktur porowych.
EN
Fractal analysis is one of the rapidly evolving branches of mathematics and finds its application in different analyses such as pore space description. It constitutes a new approach to the issue of their natural irregularity and roughness. To be properly applied, it should be encompassed by an error estimation. The article presents and verifies uncertainties along with imperfections connected with image analysis and expands on the possible ways of their correction. One of key aspects of such research is finding both appropriate place and the number of photos to take. A coarse-grained sandstone thin section was photographed and then pictures were combined into one, bigger image. Fractal parameters distributions show their change and suggest that the accurately gathered group of photos include both highly and less porous regions. Their amount should be representative and adequate to the sample. The resolution influence on the fractal dimension and lacunarity values was examined. For SEM limestone images obtained using backscattered electrons, magnification in the range of 120x to 2000x was used. Additionally, a single pore was examined. The acquired results point to the fact that the values of fractal dimension are similar to a wide range of magnifications, while lacunarity changes each time. This is connected with changing homogeneity of the image. The article also undertakes a problem of determining fractal parameters spatial distribution based on binarization. The available methods assume that it is carried out after or before the image division into rectangles to create fractal dimension and lacunarity values for interpolation. An individual binarization, although time consuming, provides better results that resemble reality to a closer degree. It is not possible to define a single, correct methodology of error elimination. A set of hints has been presented that can improve results of further image analysis of pore space.
2
Content available Fractal analysis of sandstone pore space geometry
EN
Fractal analysis is currently one of the fastest evolving branches of science. Numerous objects in nature exhibit a fractal structure. Additionally, the vast majority of rocks – especially reservoir rocks – take the form of a fractal. Computer image analysis based on thin-section images has been used for examining the fractal structure of pore spaces, directly applying the definition of the fractal box-counting dimension. For the examined sandstone sample, thin sections were made and photographed, and the corresponding values of the fractal dimension and lacunarity were calculated. Each of the photos was encompassed by porosity that was calculated based on the number of pixels. Furthermore, the volatility of the fractal dimension and lacunarity were studied as well as their relationships with the porosity. A correlation analysis between the fractal parameters and the porosity was carried out. The results were compared with the data obtained from a mercury porosimetry of the same sample of sandstone.
PL
W artykule jest przedstawiona implementacja metody estymacji lakunarności z wykorzystanie przesuwnego okna dla GPGPU (programowalnych kart graficznych), umożliwiającą analizę wielorozdzielczą obrazu, w celu dalszej klasyfikacji. Porównano dwie implementacje – zwykłą oraz potokową (typu różnicowego) do przetwarzania obrazów w odcieniach szarości ze sterowanym progowaniem. Poprzez optymalizacje algorytmu obliczeniowego dla dużych rozmiarów okna analizy uzyskano 10-krotne przyspieszenie obliczeń.
EN
Multiresolution image analysis [1, 2] is important for pattern recognition applications. Wavelets and fractals [1, 2] are used typically. A fractal based technique for analysis of the placement of binary images using estimation of the lacunarity is possible. The lacunarity could be applied for the fractal and non-fractal objects (1D,2D,3D) [3]. The estimation of the lacunarity of a 2D object is based on the sliding windows approach. The number of pixels (1’s) is counted (2) and the frequency table is computed (3). The normalization of this table gives the probability table (4). The lacunarity is calculated (7) using two moments obtained from this table. The different type of images (Fig.1) gives specific lacunarity plots (Fig.2), so classification is possible. The application of lacunarity to the grayscale images is also possible, e.g. using a set of thresholds. The computation of lacunarity is conceptually simple, but the implementation depends on processing platforms. Two implementations, conventional and pipeline, are compared in this paper. The conventional implementation uses counting of all pixels for the specific position of a window. The pipeline implementation supports the buffer of results so only updates are necessary. The programmable graphic card processor (GPGPU) and CUDA software platform are assumed for tests. The pipeline implementation is faster about 10 times for larger windows.
EN
The paper presents linear, logarithmic and exponential regression tabecular bone indices, fractal dimensions and strength. The analysis of the above parameters was supported by determining non-parametric correlation coefficients: Spearman’s ń, gamma and Kendall’s ô. The principal components’ analysis (PCA) was also performed in order to reduce the number of indices describing the variance in the data set. The analysis showed the most independent indices: lacunarity (ëm, ëmin, ëmax), BMD, Conn.D., SMI, DA, ńA and age.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.