Laboratory waste that is disposed of into the environment will have an impact on environmental pollution and threaten human health. Efforts to treat laboratory wastewater must be carried out. This research aimed to analyze the effectiveness of Anaerobic Bioaccumulation Systems with sulfate-reducing bacteria (SRB) in reducing heavy metals and sulfate ions as well as the effectiveness of plant biofiltration (PB) in reducing biological oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals in laboratory wastewater compared to quality standards. In this research, a plant biosystem which uses the principle of phytoremediation was used to reduce the heavy metal content in wastewater. This anaerobic reactor is cylindrical with r of 0.23 m and t of 0.93 m and has a volume of 1.5 m3 . In this tank, there is an SRB initial growth column with a volume 6.7 L. SRB media in the form of 30% compost fermentation solution, Postgate B nutrients with 10% sulfate added to the column. It stimulated with SRB seeds that had been isolated previously, then laboratory waste is added until it fills the column. After being acclimatized for 15 days, the laboratory wastewater began to flow slowly into anaerobic bioaccumulation system. The next stage was a plant filtration system in a size of basin 3.0x1.0x1.0 m with of 4 vertical layers. The bottom layer consists of 20% limestone, 30% coral and 50% sand. The plant used was Sansevieria trifasciata. The research results showed that the SRB Anaerobic Bioaccumulation was effective in reducing heavy metals and sulfate ions by up to 80.6% with a residence time of 24 hours after growing SRB for 15 days PB is effective in reducing BOD, COD and heavy metal content to meet the specified quality standards with a residence time of 30 hours after plant acclimatization for 15 days. The combination of the SRB anaerobic accumulation and PB system worked effectively with a total residence time of 2.25 days, which was marked by a decrease in all test parameters to below the specified quality standards.
Experimental activities carried out in laboratories usually produce complex wastewater. Due to practicum and research activities in educational laboratories, the wastewater generating from these laboratories contains organic and inorganic compounds which are dangerous for the environment if disposed of without prior treatment. Apart from high chemical oxygen demand (COD) and biological oxygen demand (BOD) values, laboratory wastewater also often contains heavy metals such as zinc (Zn), copper (Cu), chromium (Cr), lead (Pb), and iron (Fe) which are included in the hazardous waste category and can pollute the ground water. Therefore, this wastewater must be treated properly. The objective of this study is to reduce the pollutant load contained in laboratory wastewater by using combination methods of advanced oxidation processes (AOPs), and chemical-physical treatment namely coagulation and adsorption processes. The photo-Fenton process was selected as one of AOPs applied in this treatment. The effect of molar ratio variation and irradiation time in the Photo-Fenton process on the pollution load in the form of pH, COD, BOD, TSS, and heavy metals of Zn, Cu, Cr, Pb, and Fe was studied in this research. The results of the analysis of untreated laboratory wastewater samples showed that laboratory wastewater did not meet the wastewater quality standards regulated by the government of Republic of Indonesia. In this study, laboratory wastewater was treated using the pretreatment method of coagulation with alum and adsorption with activated carbon. The best results in this study were obtained in the final adsorption results after treatment with the photo-Fenton method using a molar ratio of 1: 300 for 60 minutes in which several parameters such as pH, Zn, Cu, Pb, and Fe had met environmental quality standards with the value of each parameter of 7; 0.01 mg/L; 2.9 mg/L; 0.03 mg/L; and 3.15 mg/L respectively. Meanwhile, the percentage reduction of COD, BOD, and TSS parameters was 87.49%, 87.02%, and 72.45% respectively.
Laboratory wastewater contains organic and inorganic compounds that are harmful to the environment when disposed of without prior treatment. Besides the high COD and BOD values, the laboratory wastewater also contains metals such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb) which is categorized as dangerous waste material and can pollute the groundwater. Although the quantity of wastewater produced by the laboratory is relatively small, it has a real impact on the environment around the laboratory. However, the wastewater has to be treated properly before being discharged into the environment. The aim of the research was to study the laboratory wastewater treatment by using Fenton’s reagent with coagulation and adsorption pretreatment. In the pretreatment with coagulation, three types of coagulants are used, namely PAC (Poly Aluminum Chloride), ACH (Aluminum Chlorohydrate) and Aluminum Sulfate (AS) with their respective concentrations of 10–80 ppm. The highest percentage of average pollutant removal of 58.21% was found when 80 ppm of AS was applied. The pretreatment was continued by adsorption with activated carbon and zeolite adsorbents within 60–120 minutes of mixing time. It was detected that the most optimum adsorbent was activated carbon with average pollutant removal of 50.22% within 1 hour of mixing time. Processing was extended by utilized Fenton’s reagent using a variation of the molar ratio between 1:100 and 1:400. It was obtained that the best molar ratio to degrade the laboratory wastewater is 1:300 with an average removal of pollutant of 43.45%. As a result of laboratory wastewater treatment using combine Fenton’s reagent and coagulation-adsorption pretreatment, an average pollutant removal of 90.81% was obtained. The final content of COD, BOD, TSS, as well as Cu and Pb metal has met the environmental quality standard.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.