Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lab-on-chip
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule dokonano przeglądu najbardziej interesujących rozwiązań z zakresu systemów mikroprzepływowychwykorzystujących zjawisko akustycznych fal powierzchniowych (AFP). Przemieszczanie obiektów o skali wielkości porównywalnej z rozmiarami komórek, oddzielenie ich z próbek o złożonym składzie oraz kontrola ich położenia w obszarze mikrosystemu są ważnym elementem metodyki badawczej w zakresie biomedycznych badań podstawowych. Jest to obecnie bardzo dynamicznie rozwijająca się dziedzina, która jest szczególnie cenna w aspekcie aplikacji w systemach Lab on Chip, gdzie możliwość nieinwazyjnego manipulowania obiektem badań jest szczególnie pożądana. Zastosowania, które są obecnie przedmiotem badań obejmują zagadnienia z zakresu segregowania cząstek z zawiesiny w cieczy, ich oddzielania oraz manipulowania pojedynczymi cząstkami w obszarze mikrokanału.
EN
In this paper the most interesting solutions in the field of microfluidic systems using surface acoustic waves (SAW) are reviewed. Moving objects, of a size scale comparable to the size of cells, their separation from the samples having a complex composition and control of their position in the area of a microchannel, constitute an important element of the methodology of biomedical basic research. Nowadays it has become a rapidly growing branch of science, which is particularly attractive in terms of its applicability to Lab on Chip systems, in the case of which the non-invasive manipulation of the studied object is a key issue. The applications that are currently examined include problems related to the separation of particles from a suspension in a liquid and the manipulation of individual particles in the area of a microchannel.
EN
This paper presents development and manufacturing processes of the fluorescence based microfluidic chip using Low Temperature Co-fired Ceramics technology (LTCC). The LTCC material was chosen because of its outstanding physical and chemical properties. Moreover, there is a possibility to integrate electronic and optoelectronic components into single LTCC microfluidic chip. The manufactured microfiuidic chip consists of inexpensive and commonly available electronic components and PMMA (poly(methyl methacrylate)) optic fibres. Its performance is investigated with a fluorescent dye. Five different fluorescein solutions are excited with 465 nm light source, and then the intensity of the emitted fluorescent light is measured with two photodelectors. The performed experiments have shown that it is possible to detect fluorescent signal inside the LTCC microfluidic chip using commonly available optoelectronic components.
PL
W artykule opisano proces wytwarzania mikroprzepływowego czujnika fluorescencyjnego, w technologii niskotemperaturowej ceramiki współwypalanej LTCC (Low Temperature Co-fired Ceramics Technology]. Wykonany czujnik składa się z tatwo dostępnych i niedrogich elementów elektronicznych, a także z polimerowych światłowodów PMMA (polimetakrylan metylu]. Pracę mikroprzepływowego czujnika ceramicznego zbadano za pomocą barwnika fluorescencyjnego. W tym celu przygotowano pięć różnych stężeń fluoresceiny w etanolu. Roztwory testowe pobudzano źródłem promieniowania, o długości fali równej 465 nm, a następnie mierzono (dwoma fotodetektorami) natężenie wyemitowanej wiązki światła. Przeprowadzone badania wykazały, że możliwa jest detekcja sygnału fluorescencyjnego, wewnątrz mikroprzepływowego czujnika ceramicznego, za pomocą powszechnie dostępnych elemenlów optoelektronicznych.
EN
In this document a new approach for sensing and controlling temperature in lab-on-chip systems is presented. It is utilized in disposable flow-through microsystem with optical detection for measurement of creatinine concentration in urine and postdialysate fluid. Heating system was realized as a ceramic based thick-film resistor with controlled temperature behaviour, designed specifically for ensuring uniform power distribution through the system.
PL
W pracy zaproponowano nową metodę detekcji i kontroli temperatury w mikrofluidycznych systemach typu lab-on-chip. Pozwala ona na stosowanie jednorazowych modułów mikrofluidycznych służących do detekcji koncentracji keratyniny w moczu oraz płynach ustrojowych podczas dializy. System grzewczy zrealizowany został w formie grubowarstwowego rezystora o kontrolowanym temperaturowym współczynniku rezystancji, zaprojektowanym w celu zapewnienia jednorodnej dystrybucji mocy grzewczej w obrębie systemu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.