Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kubit fotonowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W swobodnej przestrzeni foton posiada dwa spinowe stopnie swobody, co oznacza że jest idealnym kubitem lotnym. Ze względu na charakter oddziaływania fotonu z materią źródła, modulatora i detektora, foton może teoretycznie łatwo przekazywać stan kwantowy kubitowi stacjonarnemu. Co umożliwia konkatenację kanału kwantowego. Kudit fotonowy jest oczywiście obszarem badań podstawowych i aplikacyjnych w dziedzinie nauki o fotonie (photon science), a w obszarze jego funkcjonalizacji w telekomunikacji i komputingu jest istotnym fragmentem inżynierii fotonu i nową gałęzią fotoniki. Inżynieria fotonu, dodając fotonowi dodatkowe stopnie swobody, czyni z niego kudit. Kudit fotonowy, posiadając wszystkie zalety fotonu, staje się nośnikiem potężnej porcji informacji kwantowej, jeśli tylko uda się funkcjonalizować tak bardzo złożony system kwantowy i sposób kodowania w nim informacji. W uproszczeniu, najefektywniejszą metodą produkcji funkcjonalnego kuditu fotonowego jest posiadanie odpowiedniego źródła potrafiącego generować złożone formaty pola elektromagnetycznego zawierającego pojedynczy foton idealny, lub złożone formaty fotonu pojedynczego lub wielokrotnego, w tym ułamkowego. Bardzo szeroką tematykę badawczą nad kuditami fotonowymi przybliżamy w niniejszej pracy kilkoma przykładami kierunków prac, w sposób daleki od wyczerpującego.
EN
In free space, a photon has two spin degrees of freedom, which means that it is a perfect flying qubit. Due to the nature of the interaction of the photon with the matter of the source, modulator and detector, the photon can theoretically easily transfer a quantum state to a stationary qubit. Which makes it possible to concatenate a quantum channel. Photon qudit is of course an area of basic and application research in the field of photon science, and in the area of its functionalization in telecommunications and computing. It is an important part of photon engineering and a new branch of photonics. The engineering of the photon, by adding additional degrees of freedom to the photon, makes it a qudit. The photon qudit, having all the advantages of a photon, becomes a carrier of a huge portion of quantum information, if only such a complex quantum system and the way of coding information in it can be functionalized. In simple terms, the most effective method of producing a functional photon qudit is to have an appropriate source capable of generating complex formats of the electromagnetic field containing a single ideal photon, or complex formats of a single or multiple photon, including a fractional photon. The very broad research topic on photon qudits is presented here, in a far from exhaustive way, with several examples of directions of work.
PL
Kubit fizyczny, na potrzeby niniejszych rozważań, można zdefiniować jako izolowany obiekt kwantowy o dwóch statystycznie superponowanych stanach kwantowych, który posiada potencjał aplikacyjny (funkcjonalny) jako kubit logiczny. Czas koherencji kubitu fizycznego (czas życia, czas istnienia w stanie superpozycji) musi być odpowiednio długi, aby umożliwić zastosowania praktyczne. Czas życia kubitu w stanie koherencji jest określony przez procesy dekoherencji środowiskowej. Kubit (logiczny) w obszarze kwantowej teorii informacji jest elementarną jednostką informacji kwantowej, analogiem do skalarnego bitu. W odróżnieniu od unormowanej skalarnej wartości bitu 0 lub 1, kubit jest wektorem unormowanym (ale nie w dwuwymiarowej przestrzeni Euklidesa) w dwuwymiarowej przestrzeni Hilberta o bazie ortonormalnej {|0>, |1>}, q=α|0>+β|1>, gdzie α, β są unormowanymi |α²|+|β²|=1 liczbami zespolonymi i statystycznymi amplitudami stanów kwantowych. W notacji Diraca |0>=[1,0], |1>=[0,1]. Pomiar powoduje kolaps koherentnego stanu kwantowego będącego statystyczną superpozycją stanów składowych do stanu dyskretnego z prawdopodobieństwami |α²| dla stanu |0>, i |β²| dla stanu |1>. Tak zdefiniowany logicznie kubit musi być wykonany fizycznie na realizowalnych, stabilnych, dwupoziomowych obiektach kwantowych. Jako kubity fizyczne stosuje się np. cząstki o spinie ½, elektron, polaryzację pojedynczego fotonu, izolowane pojedyncze atomy neutralne i jony, ale także kubity syntetyczne jak kolorowe centra wakancyjne w kryształach, kropki kwantowe, oraz emergencje kwantowe jak kwazicząstki i kwantowe pobudzenia kolektywne np. plazmoniczne.
EN
The physical qubit, for the purposes of these considerations, can be defined as an isolated quantum object with two statistically superposed quantum states, which has an application (functional) potential as a logical qubit. The coherence time of the physical qubit (lifetime, lifetime in superposition) must be long enough to allow for practical applications. The lifetime of a qubit in a coherence state is determined by the processes of environmental decoherence. The (logical) qubit in the field of quantum information theory is an elementary unit of quantum information, analogous to a scalar bit. Unlike a normalized scalar bit value of 0 or 1, a qubit is a normed vector (but not in a two-dimensional Euclid space), in a two-dimensional Hilbert space with an orthonormal basis {|0>,|1>}, q = α | 0> + β | 1>, where α, β are normalized |α²|+|β²|=1 complex numbers and statistical amplitudes of quantum states. In Dirac notation, |0>=[1,0], |1>=[0,1]. The measurement causes a collapse of a coherent quantum state which is a statistical superposition of the component states to the discrete state with the probabilities |α²| for the state |0>, and |β²| for state |1>. Such a logically defined qubit must be physically realized on stable, two-level quantum objects. Physical qubits are e.g. spin ½ particles, electrons, single photon polarization, isolated neutral atoms, and ions, but also synthetic qubits such as coloured vacancy centres in crystals, quantum dots, and quantum emergencies such as quasiparticles and quantum collective stimulations, e.g. plasmonic.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.