Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  krzywizny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Defects in structural timber
EN
The paper presents the defects that are typically found in structural timber. The model of the so-called flawless timber has been made more precise. Additionally, the impact of defects on timber quality was characterised. Defect classification with respect to the time of formation, type and causes was presented. The following defects were discussed in a detailed manner: knots, twisted fibres, cracks, resin pockets, stains, rots, insect channels, wanes, shape defects and sclerenchyma fibres. The main objective of the paper is to show actual imperfections in the conifer wood revealed in the examined elements. The cross-sections of round timber and construction and structural sawn timber were analysed.
PL
W artykule przedstawiono typowe wady drewna konstrukcyjnego. Przybliżone zostały wzorce tzw. drewna bezbłędnego. Scharakteryzowano również wpływ wad na jakość drewna oraz ich podział w odniesieniu do czasu powstania, rodzaju uszkodzeń i ich przyczyn. Szczegółowo zilustrowano sęki, skręt włókien, pęknięcia, pęcherze żywiczne, zabarwienia, zgnilizny, chodniki owadzie, obliny, wady kształtu oraz twardzicę. Głównym celem pracy jest ukazanie rzeczywistych niedoskonałości przebadanych elementów z drewna iglastego. Przeanalizowano przekroje drewna okrągłego oraz tarcicy budowlano-konstrukcyjnej.
EN
The article concerns the random dispersion of deformation indicators, especially the influence of subsidence fluctuation on the distribution of inclinations and curvatures. Surface curvatures have significant influence on building objects. The article includes the probability studies of displacement fluctuation for two arbitrarily close but different points. It was determined, if the probability is dependent on each other or not. Therefore, the separate deformation indicators can be considered to damage hazard assessment of building objects, if their standard variation of fluctuation is well determined (dependent on the fluctuation of vertical and horizontal displacements). Consequently, it is possible to determine the confidence intervals of fluctuation for all separate deformation indicators. Even in a case of low values of predicted separate curvatures, their values can be significant higher when considering their natural dispersion.
PL
Artykuł dotyczy rozproszenia losowego wskaźników deformacji, w szczególności wpływu fluktuacji obniżeń na kształtowanie się fluktuacji nachyleń i krzywizn. W znacznym stopniu dotyczy krzywizn terenu i ich wpływu na obiekty budowlane. Wskaźnika, do którego panują dwa poglądy. Jeden o małej jego przydatności do oceny szkodliwości wpływów eksploatacji górniczej na obiekty budowlane, gdyż w wyniku pomiarów terenowych stwierdza się duży rozrzut – fluktuacje. Drugi, że wskaźnik ten ma istotne znaczenie, decyduje o zmianie rozkładu pionowych oddziaływań między obiektem a podłożem. Zaznaczyć należy, że wskaźnik ten jest trudno sprawdzalny geodezyjnymi pomiarami. Występowanie fluktuacji – naturalnych rozproszeń – określanych pomiarowo wskaźników deformacji tłumaczy się przypadkowym spękaniem górotworu, jego przypowierzchniowej warstwy. Deformacje odcinkowe wyznaczane z wzorów (1), (2), (3) na podstawie pomiarów przemieszczeń w, u nie są dokładnymi odpowiednikami wskaźników deformacji, które są wynikiem prognozy. Prognozowane wskaźniki deformacji T, K, e, popularnie zwane wskaźnikami punktowymi, liczone są w prognozie na podstawie wzorów na pochodne obniżeń i przemieszczeń poziomych w pewnych punktach obliczeniowych. Teoretycznie, oba sposoby byłyby równoważne, gdyby były wyliczane graniczne ich wartości przy długości boku l → 0. W artykule przeanalizowano prawdopodobieństwo fluktuacji przemieszczeń dwóch dowolnie bliskich, lecz różnych punktów, czy jest od siebie zależne, czy też nie. Najprostsze teoretyczne modele, jakie analizowano są następujące: Model igłowy: fluktuacje w dwóch dowolnie bliskich, lecz różnych punktach są od siebie niezależne. Model ziarnisty: ośrodek ma strukturę ziarnistą (o różnych rozmiarach ziaren, tak różnorodnie rozmieszczonych, że dowolny punkt (x, y, z) należy zawsze do jakiegoś ziarna lub leży na granicy ziaren sąsiednich. Model falisty: można go utworzyć z modelu ziarnistego, co daje obraz podobny do lekko sfalowanego morza. W takim modelu można byłoby rozważać te fluktuacje, jako ciągłe. Z analizy tej wynika, że najprostszym i poprawnym w sensie matematycznym jest model falisty, w którym wszystkie pochodne typu (26) są określone z wyjątkiem być może pewnych punktów lub krzywych, gdzie mogą one być nieciągłe. W obszarach, w których są one skończone, podstawową funkcją losową jest fluktuacja obniżeń φw. Fluktuacje nachyleń i krzywizn są pochodnymi fluktuacji obniżeń i są jednoznacznie określone przez φw. Podobnie jest z poziomymi przemieszczeniami i odkształceniami, gdzie podstawowymi funkcjami losowymi są składowe poziomego przemieszczenia, a fluktuacje odkształceń są wyznaczone przez ich pochodne. W rozdziale 4, przyjmując różne długości l oraz łączne odchylenie standardowe obniżenia punktu (31 mm) wynikające z błędu pomiaru (1 mm) oraz wynikające z naturalnego rozproszenia (30 mm), obliczono wartości odchyleń standardowych σT, σK rozproszenia wpływów dla nachyleń i krzywizn. Obliczono je dla wartości ekstremalnych nachyleń ±Tmax oraz krzywizn ±Kmax, będących skutkiem przykładowej eksploatacji w postaci półpłaszczyzny, na różnych głębokościach, od 0 do 1000 m, oraz wartości wmax = 1 m i parametru r rozproszenia wpływów r = 300 m. Obliczenia wartości odchyleń standardowych wykonano przyjmując poziom ufności α = 0,05. Wykresy zależności kształtowania się maksymalnego nachylenia, krzywizny i promienia krzywizny przedstawiono odpowiednio na rysunkach 1-3. Następnie przy założeniu, że wartość odchylenia standardowego σw jest niezależna od położenia obiektu względem eksploatacji, obliczono rozkłady obniżeń, nachyleń i krzywizn w całym obszarze wpływów eksploatacji od 1,5r do –1,5r, co przedstawiono odpowiednio na rysunkach 4-6. Z rysunków tych wynika, jak w znacznym zakresie mogą fluktuować (z prawdopodobieństwem 95%) nachylenia, a zwłaszcza krzywizny w stosunku do wartości średnich, które prognozujemy. W konkluzji stwierdzono, że o rozproszeniu naturalnym wskaźników nie wiadomo wszystkiego i możliwe są różne podejścia do opisu tego rozproszenia. Z powodu braku wiarygodnego modelu nie jest możliwe określenie odchyleń standardowych w przypadku tzw. punktowych deformacji prognozowanych. Dlatego do oceny zagrożenia obiektów budowlanych można rozpatrywać odcinkowe wskaźniki deformacji, dla których istnieją dobrze określone oszacowania (5), (6), (7) odchyleń standardowych ich fluktuacji wynikające z ich uzależnienia od fluktuacji obniżeń i przemieszczeń poziomych. W konsekwencji można określić przedziały ufności dla tych fluktuacji dla wszystkich odcinkowych wskaźników deformacji. Nawet w przypadku, gdy prognozowane odcinkowe krzywizny mają bardzo małe wartości, to w wyniku uwzględnienia rozproszenia naturalnego ich wartości mogą być istotnie duże.
PL
Artykuł prezentuje wyniki badań nad możliwością zastosowania metody InSAR do wyznaczania krzywizn powierzchni terenu, powstałych wskutek podziemnej eksploatacji górniczej. Wyznaczone na podstawie pomiaru satelitarnego krzywizny poddano weryfikacji, wykorzystując wyniki klasycznych pomiarów geodezyjnych, zrealizowanych na punktach linii obserwacyjnej. Porównano je także do wyników sporządzonej reprognozy przedmiotowego wskaźnika.
EN
This article presents the results of a research on the applicability of InSAR method to determine the land surface curvatures, resulting from underground mining exploitation. The curvatures were determined on the basis of the satellite measurements and verified by the use of classical results of surveys, carried out at the observation points of the line. They have also been compared to the results of the earlier prepared prognosis of the subject indicator.
4
Content available remote Weingarten surfaces of revolution in 3-dimensional hyperbolic space
EN
The purpose of this paper is to construct a family of Weingarten surfaces of revolution satisfying the Weingarten relation K1= f(K2) in 3-dimensional hyperbolic space H3, where K1,K2 are principal curvatures and f is a some function.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.