Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kruszywo drobne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Potential alkaline reactivity of sands from domestic deposits
EN
Sand used as fine aggregate in concrete may, under unfavorable environmental conditions, cause alkali-silica reaction and the consequent deterioration of durability and functional properties of concrete. The aim of this work is to compare alkali-silica reactivity of 18 natural sands of various origin. The potential reactivity of sands was tested according to the procedures PB/1/18 and PB/3/18 established in the Technical Guidelines issued by the General Directorate for National Roads and Motorways. Mineral composition of aggregate was analyzed in order to identify reactive minerals. Mortar bar expansion tests and microscopic analyses of the products of alkali-silica reaction were performed. The research indicated that 6 (33%) out of 18 tested aggregates should be classified as “moderately reactive” and 12 (67%) aggregates should be classified as “non-reactive”. It was demonstrated that the origin of sand affects its susceptibility to alkali-silica reaction.
PL
Piasek stosowany jako kruszywo drobne w betonie w niekorzystnych warunkach środowiska może spowodować reakcję alkaliczno-krzemionkową, a w konsekwencji – pogorszenie właściwości użytkowych i trwałości betonu. Celem pracy jest porównanie reaktywności alkaliczno-krzemionkowej 18 piasków naturalnych o różnym pochodzeniu. Wykonano badania potencjalnej reaktywności piasku zgodnie z procedurami PB/1/18 i PB/3/18 przedstawionymi w Wytycznych Technicznych GDDKiA. Przeprowadzono analizę składu mineralnego kruszywa pod kątem zawartości reaktywnych minerałów, badanie wydłużenia próbek zapraw oraz analizę mikroskopową produktów reakcji alkalia-krzemionka. W toku badań dowiedziono, że 6 kruszyw (33%) spośród 18 przebadanych należy zaklasyfikować do kategorii „umiarkowanie reaktywne”, natomiast 12 kruszyw (67%) należy przypisać do kategorii „niereaktywne”. Wykazano wpływ pochodzenia piasku na jego podatność na wystąpienie reakcji alkalicznej.
EN
This study conducted a thorough investigation on the combined effects of fine aggregate (FA) size, steel fiber, and polypropylene (PP) fiber on the spalling behavior and mechanical properties of ultra-high-performance concrete (UHPC) at high temperature. FAs with 0.6, 2.36, and 4.75 mm were incorporated with steel fibers or PP fibers in UHPC. Test results showed that the synergistic enhancement in spalling prevention of UHPC at high temperature was only found in the combination of PP fiber and large-sized FA. Large-sized FA not only increased the fraction of microcracks but also enhanced their connectivity in UHPC with PP fibers, thus increasing the permeability and improving the spalling resistance at high temperature. This reduced the required PP fiber content for spalling prevention. Besides, steel fibers and large-sized FAs had a combined negative effect on mechanical properties above 600 °C, resulting in even lower mechanical properties at 900 °C compared to UHPC without any fiber and UHPC with PP fibers. Microstructural observation also found that the degradation of steel fibers and microcracks generated by expansion of aggregate both severely damaged the microstructures of UHPC at 900 °C. By contrast, adding PP fibers reduced compressive strength of UHPC below 600 °C due to the voids left by the decomposition of PP fibers, but it did not affect compressive strength at 900 °C, as the cracks in the matrix was enlarged, which reduced the negative effect of PP fibers.
PL
W celu oceny przydatności niemielonego żużla granulowanego do produkcji betonu, jako częściowego zamiennika kruszywa drobnego, zastępującego piasek, przeprowadzono szczegółowe badania wpływu tego dodatku na właściwości świeżego i stwardniałego betonu. Badania te objęły wytrzymałość na ściskanie, oznaczenie modułu sprężystości, ocenę trwałości przez oznaczenie odporności na zamrażanie i rozmrażanie, wpływ na właściwości betonów, dojrzewających w warunkach zimowych, to jest przechowywanie w temperaturze +10°C i letnich, w temperaturze 20°C. Następnie zbadanie odporności na działanie chlorków i na karbonatyzację, w końcu ocena odporności na ługowanie przy użyciu metody kwasowej. Długotrwałymi badaniami objęto także reakcję krzemionki z wodorotlenkami sodu i potasu. W końcu przeprowadzono badania na dużą skalę, w rzeczywistych warunkach konstrukcyjnych, w austriackiej fabryce prefabrykatów. W tych warunkach doświadczenia dotyczyły głównie długotrwałych pomiarów rozwoju wytrzymałości elementów prefabrykowanych. W celu oceny przydatności niezmielonego żużla granulowanego, jako częściowego zamiennika kruszywa drobnego, wyprodukowano i oceniono betony z dwoma różnymi zawartościami żużla granulowanego – 10% i 15% masowych. Do badań stosowano niezmielone żużle granulowane, pochodzące z dwóch austriackich zakładów produkcyjnych – w Górnej Austrii i Styrii. Wykorzystano świeże i stare żużle granulowane z obu lokalizacji, ponieważ już składowane żużle mogą być również wykorzystywane, jako surowiec do produkcji betonu. Przedstawione w pracy wyniki wskazują na możliwość zastąpienia kruszywa naturalnego o frakcji < 4 mm, niezmielonym żużlem granulowanym, bez negatywnego wpływu na właściwości betonu.
EN
In order to evaluate the usefulness of unground granulated slag for the concrete production, as the partial replacement of fine aggregate – namely sand, the detailed studies of the influence of this addition on the properties of the fresh and hardened concrete were conducted. These studies included the compression strength and the modulus of elasticity determination, as well as the evaluation of durability by the determination of frost resistance. The evaluation of the properties of concretes hardened under winter conditions, at +10°C and summer conditions at +20°C. These studies also covered the resistance to chloride attack and carbonization. The long-lasting examination covered also the ASR. At the end, under real construction conditions in the Austrian prefabrication plant, the unground granulated slag was examined. Under these conditions especially the long-lasting measurements of the strength development of the precast elements were verified. In order to evaluate the usefulness of the unground granulated slag, as partial replacement of fine aggregate, the concretes with the additions of slag of 10% and 15% were produced and examined. For this evaluation, the slags of two Austrian plants from Upper Austria and Styria were used. The old and fresh slags from these two plants were used because the old slags can also be adopted for concrete production. Presented in the paper results are confirming that the natural aggregate of the fraction < 4 mm can be successfully replaced by unground granulated slag, without any negative influence on the properties of concrete.
EN
The article presents the results of investigation of mechanical and thermal properties of lightweight concrete with waste copper slag as fine aggregate. The obtained results were compared with the results of concrete of the same composition in which natural fine aggregate (river sand) was used. The thermal properties tests carried out with the ISOMET 2114 device included determination of the following values: thermal conductivity coefficient, thermal volume capacity and thermal diffusivity. After determining the material density, the specific heat values were also calculated. The thermal parameters were determined in two states of water saturation: on fully saturated material and dried to constant mass at 65°C. Compressive strength, open porosity and bulk density are given as supplementary values. The results of the conducted research indicate that replacing sand with waste copper slag allows to obtain concrete of higher ecological values, with similar mechanical parameters and allowing to obtain significant energy savings in functioning of cubature structures made of it, due to a significantly lower value of thermal conductivity coefficient.
PL
W badaniach opisanych w niniejszej pracy określono właściwości termiczne betonu lekkiego oraz jego właściwości mechaniczne (wytrzymałość na ściskanie i rozciąganie). W części serii zamiast piasku jako kruszywo drobne zastosowano odpadowy żużel pomiedziowy, co umożliwiło określenie wpływu tego materiału na właściwości cieplne betonu lekkiego oraz ocenę, czy wpływ ten jest równie wyraźny jak w przypadku betonu zwykłego i ciężkiego. Zbadano również wpływ ilości użytego cementu (200 kg/m3 i 300 kg/m3) oraz stosunku woda/cement (0,50, 0,55 i 0,60). Wykonano łącznie dwanaście serii betonu. W sześciu z nich jako kruszywo drobne zastosowano piasek rzeczny, a w kolejnych sześciu zastąpiono go odpadowym żużlem pomiedziowym. Wymiany dokonano w stosunku masowym 1:1. Zastosowano cement portlandzki wieloskładniowy CEM II/B-M (V-LL) 32,5 R. Kruszywo grube składało się z dwóch frakcji kruszywa lekkiego. Frakcją 4-8 mm był kruszywo Certyd, a frakcję 8-16 mm stanowił keramzyt. Całkowita ilość wody zastosowanej w recepturach uwzględniała chłonność kruszywa lekkiego, którą badano przed przygotowaniem receptur. Właściwości cieplne badano na próbkach o średnicy 150 mm i grubości ok. 25-30 mm. W celu zbadania właściwości betonu w dwóch różnych stanach granicznego nasycenia, część próbek przechowywano w wodzie do momentu przeprowadzenia badań, a pozostałą część umieszczono w suszarce w temperaturze 65°C do momentu osiągnięcia stabilnej masy. Wytrzymałość na ściskanie badano na kostkach 100 mm. Wpływ rodzaju zastosowanego kruszywa drobnego nie był w tym przypadku jednoznaczny, gdyż w przypadku połowy serii, wymiana piasku na odpadowy żużel pomiedziowy spowodowała wzrost wytrzymałości, a w przypadku pozostałych serii jej spadek. Określono również porowatość materiału. Analiza wyników wykazała, że zwiększa się ona wraz z ilością cementu w betonie i współczynnikiem w/c. Ponadto beton wykonany z wykorzystaniem odpadowego żużla pomiedziowego wykazuje nieco wyższą porowatość niż beton wykonany z wykorzystaniem piasku o tych samych pozostałych parametrach (stosunek w/c i ilość cementu). Właściwości cieplne zmierzono metodą niestacjonarną za pomocą urządzenia ISOMET 2114 wyposażonego w sondę powierzchniową. Uzyskane wartości właściwości cieplnych poddano analizie statystycznej. Ze względu na dużą ilość danych analizę ograniczono do jednoczynnikowej analizy wariancji (ANOVA). Ponieważ w przypadku każdego z rozpatrywanych wariantów analiza wykazała, że otrzymane różnice między seriami są istotne statystycznie, przeprowadzono następnie analizę post hoc. Niezależnie od wymienionych powyżej czynników różnicujących poszczególne serie analizie poddano również wartości otrzymane w przypadku próbek nasyconych wodą i wysuszonych do stałej masy. Wyniki badania współczynnika przewodności cieplnej wskazują na istotne różnice w wartościach tego parametru w zależności od nasycenia betonu. Próbki wysuszone charakteryzują się niższą wartością współczynnika przewodnictwa cieplnego. Większe zróżnicowanie tego parametru w zależności od poziomu nasycenia betonu wodą dało się zaobserwować w przypadku serii z wykorzystaniem piasku. W tej grupie nie ma również korelacji pomiędzy porowatością a zróżnicowaniem wyników uzyskanych na próbkach nasyconych i wysuszonych. Serie betonu wykonane z wykorzystaniem odpadowego żużla pomiedziowego wykazują korelację pomiędzy spadkiem przewodności cieplnej a porowatością. Korelacja ta jest jednak przeciwna od tej, jakiej należałoby się spodziewać. Wraz ze wzrostem porowatości zmniejsza się wpływ stanu nasycenia próbek.
EN
Environmental problems are considered a serious situation in modern construction. Reusing and recycling glass wastes is the only method to decrease waste produced. There is growing environmental compression to decrease glass waste and to reprocess as much as possible. In this investigational work, the effect of partially substituting crushed waste glass in concrete is considered. The study investigates crushed waste glass used as a partial replacement of fine aggregate for new concrete. Recycled glass waste was partially replaced as 5%, 10%, 15%, 20%, 25%, 30, 35, 40%, 45%, 45% and 50% and tested at 7, 14 and 28 days of curing at 20° for mechanical properties and compared with those of controlled mix. The compressive strength, splitting tensile strength and flexural forces and static elasticity modulus of specimens with 20% waste glass content was 30%, 19.41%, 9.13% and 10.12%, respectively, which is higher than the controlled mix at 28 days. The outcomes displayed that the maximum rise in strength of concrete occurred when 20% replacement with glass crush. It is found that crushed waste glass can be used as fine aggregate replacement material in concrete production.
PL
Prezentowany artykuł dotyczy analizy drobnokruszywowych fibrokompozytów o objętościowej zawartości włókien w przedziale od 0,42 do 2,5%. Przeprowadzono analizę statystyczną wyników badań wytrzymałości na ściskanie i rozciąganie przy rozłupywaniu oraz wytrzymałości resztkowych wybranych fibrokompozytów. Na podstawie przeprowadzonej analizy zaproponowano krzywą opisującą zmianę wytrzymałości na ściskanie w funkcji wytrzymałości na rozciąganie przy rozłupywaniu. Przeanalizowano również zależność pomiędzy siłą obciążającą a szerokością rozwarcia rysy (CMOD). Na jej podstawie możliwe było określenie wytrzymałości resztkowych. Zgodnie z Model Code 2010 określono klasy fibrokompozytów oraz ustalono, czy możliwa jest częściowa redukcja zbrojenia konwencjonalnego poprzez zastosowanie fibrokompozytu drobnokruszywowego.
EN
The presented article concerns analysis of fine aggregate fibrous composites of volumetric content of fibres in the range from 0,42 to 2,5%. In case of these composites, the statistical analysis also included compression strength and tension strength at splitting, and residual strength. On the basis of this analysis the curve were proposed describing value changes in compression strength in function of tension strength at splitting. There was also analysed an interdependence between loading force and crack mode opening displacement (CMOD). On its basis it was possible to determine residual strength and to establish, according to Model Code 2010, fibrous composite classes and also whether it was possible to partially replace ordinary reinforcement with fine aggregate fibrous composites.
EN
Plastic obtained from the discarded computers, televisions, refrigerators, and other electronic devices is termed as e-plastic waste. E-plastic waste is non-biodegradable waste. This paper focuses to investigate the replacement of fine aggregate with plastic aggregate obtained from e-plastic. The paper presents a detailed comparison of concrete properties (i.e.: compressive strength, tensile strength, flexural strength, density and workability) for normal concrete and concrete containing e-plastic fine aggregates. The testing was conducted according to the ASTM standards. 28-day Compressive, Flexural and Split tensile strengths were determined. In addition to the effect of e-plastic fine aggregate, silica fume is added as an admixture to find the effect on strengths. Authors have performed a compressive, flexural and tensile test of concrete mix with various percentages of e-plastic aggregates (i.e., 0, 5, 10, 15 and 20%) and silica fume (i.e.: 0, 5 and 10%) and concrete densities are also considered. It has been concluded that an increase in the e-plastic fine aggregate results in reduction in densities, compressive, flexural and tensile strength values. However, when we add silica fume to the concrete mixture it leads to strength values similar to the control mixture. The optimum obtained concrete blend contained 5% e-plastic fine aggregates and 10% silica fume. The addition of silica fume in concrete mixtures increases the 28-day compressive, flexural and tensile strengths. Moreover, the density of concrete decreases with the increase in the e-plastic aggregates.
PL
Tworzywa sztuczne uzyskane ze zużytych komputerów, telewizorów, lodówek i innych urządzeń elektronicznych są określane jako tworzywa sztuczne z odpadów elektronicznych. Tworzywa sztuczne z odpadów elektronicznych to odpady nieulegające biodegradacji. Niniejszy artykuł koncentruje się na kwestii zastąpienia drobnego kruszywa kruszywem z tworzyw sztucznych z odpadów elektronicznych. W pracy przedstawiono szczegółowe porównanie właściwości betonu (tj. wytrzymałość na ściskanie, rozciąganie i zginanie, gęstość oraz urabialność) dla normalnego betonu i betonu zawierającego drobne kruszywa z tworzyw sztucznych z odpadów elektronicznych. Testy przeprowadzono zgodnie ze standardami ASTM. Określono 28-dniową wytrzymałość na ściskanie, zginanie i rozciąganie przy rozłupywaniu. Zbadano wpływ drobnego kruszywa z tworzyw sztucznych pochodzącego z odpadów elektronicznych oraz pyłów krzemionkowych na wspomniane właściwości betonu. Autorzy przeprowadzili test ściskania, zginania i rozciągania mieszanki betonowej dla różnych wartości procentowych kruszywa z tworzyw sztucznych z odpadów elektronicznych (tj. 0,5, 10, 15 i 20%), pyłów krzemionkowych (tj. 0, 5 i 10%) oraz gęstości betonu. Stwierdzono, że zwiększony udział procentowy drobnego kruszywa z tworzyw sztucznych pochodzącego z odpadów elektronicznych prowadzi do zmniejszenia gęstości, wytrzymałości na ściskanie, zginanie i rozciąganie. Jednakże dodanie pyłów krzemionkowych do mieszaniny betonowej pozwala uzyskać parametry wytrzymałościowe podobne do mieszaniny kontrolnej. Otrzymana optymalna mieszanka betonu zawiera 0,5% drobnych kruszyw z tworzyw sztucznych pochodzących z odpadów elektronicznych i 10% pyłów krzemionkowych. Dodatek pyłów krzemionkowych w mieszankach betonowych zwiększa 28-dniową wytrzymałość na ściskanie, zginanie i rozciąganie. Ponadto gęstość betonu zmniejsza się wraz ze wzrostem udziału kruszyw z tworzyw sztucznych z odpadów elektronicznych.
8
Content available remote Alkali-silica reactivity of selected domestic fine aggregates
EN
The paper presents selected information on the quality of the aggregates, especially natural sands, extracted and manufactured in Poland. The sands usually meet the basic quality requirements (e.g. concerning grading and purity) for fine aggregates to be used in road construction. Tests of the alkali reactivity of natural sands and manufactured (by crushing compact rock) sands are described in detail. The results of the reactivity tests carried out in accordance with domestic standards PN-B-06714 show the tests to be poorly reliable. Exemplary abridged petrographic descriptions of selected sands and the results of reactivity tests carried out on mortar beams in accordance with standard ASTM C1260 are presented. The beam linear expansion values were geographically assigned by marking them on a contour map of Poland. The tested fine aggregates were found to greatly vary qualitatively as regards their mineral composition and the likelihood of occurrence of the alkali-aggregate reaction. Over half of the tested sands were characterized by an expansion over 0.1%, which according to the AASHTO R-80 classification means that they are moderately reactive aggregates.
PL
W artykule przedstawiono wybrane informacje dotyczące jakości eksploatowanych i produkowanych w Polsce kruszyw drobnych, a szczególnie piasków naturalnych. Eksploatowane piaski najczęściej spełniają podstawowe wymagania jakościowe stawiane kruszywom drobnym stosowanym w budownictwie drogowym (np. w zakresie ich składu ziarnowego i czystości). Szczegółowo omówiono badania reaktywności alkalicznej piasków naturalnych i tzw. piasków łamanych uzyskiwanych w procesie kruszenia skał zwięzłych. Wyniki uzyskiwane w badaniach reaktywności, prowadzonych według norm krajowych PN-B-06714, wskazują na ich małą wiarygodność. Podano przykłady skróconego opisu petrograficznego wybranych piasków oraz wyniki badań reaktywności przeprowadzonych na beleczkach z zaprawy według normy ASTM C1260. Wartości rozszerzalności liniowych beleczek przyporządkowano geograficznie, nanosząc je na mapę konturową Polski. Badane kruszywa drobne wykazały duże zróżnicowanie jakościowe pod względem ich składu mineralnego i możliwości wystąpienia reakcji typu alkalia-kruszywo. Ponad połowa spośród przebadanych piasków charakteryzowała się ekspansją powyżej 0,1%, co według klasyfikacji AASHTO R-80 odpowiada kruszywom umiarkowanie reaktywnym.
EN
Recycling of plastic wastes helps in reducing waste disposal problems and helps for the sustainable development of the country. Concrete with various % (0 to 55%) of waste plastic aggregates were tested for their mechanical strength properties. In the present work, plastic aggregates obtained as end product of a polymer recycle industry in the form of grains called as plastic aggregates are used as fine aggregate replacements in concrete. The addition of plastic aggregate as fine aggregate replacements results in increase in compressive strength, split tensile strength and flexural strength and thus helps in production of sustainable concrete. It is observed that, the optimum % of replacement of sand with waste plastic waste is 40% and it is also found that upto55% of sand replacements with plastic wastes, mechanical strength values are comparable with that of the normal concrete.
10
Content available remote Surface blast-cleaning waste as a replacement of fine aggregate in concrete
EN
In the article the possibility of using a surface blast-cleaning waste as a replacement of fine aggregate in concrete manufacturing was presented. Concretes with w/c ratio 0.6 and 300 kg/m3 dosage of cements: CEMI 32.5R and CEMII/B-V 32.5N were tested. The quite high value of the w/c ratio resulted in good compactibility of the mixtures without use of plasticizer. The replacement rate of the fine aggregate (0-2 mm) with copper slag (CS) was 33%, 66% and 100% respectively. Concretes of the same composition served for reference except for with river sand as fine aggregate instead of slag. The performed tests focused on: compressive and tensile strength (both after 28 days), sorptivity, free water absorption capacity and abrasion resistance. The obtained results showed that the strength and some other tested properties of concretes with copper slag as sand replacement were similar or even better than that of the control mixtures.
PL
W artykule zaprezentowano badania na temat możliwości zastąpienia całości lub części drobnego kruszywa w betonie żużlem pomiedziowym - odpadem z piaskowania. Badano beton z w/c = 0.6 i zawartością cementów CEM I 32.5 R i CEM II/B-V 32.5N 300 kg/m3. Stosunkowo wysoka wartość współczynnika w/c pozwoliła na dobre zagęszczenia mieszanek bez użycia plastyfikatora. Stopień zastąpienia drobnego kruszywa (0-2 mm), żużlem pomiedziowym wyniósł odpowiednio 33%, 66% i 100%. Beton o tym samym składzie ze 100% piasku rzecznego jako kruszywa drobnego służył jako referencyjny. Przeprowadzone badania koncentrowały się na: wytrzymałości na ściskanie i rozciąganie (po 28 dniach), sorpcyjności, nasiąkliwości i odporności na ścieranie. Uzyskane wyniki wykazały, że wytrzymałość i niektóre inne badane właściwości betonów z odpadem jako zamiennikiem piasku były podobne lub nawet lepsze niż właściwości betonu referencyjnego.
11
Content available remote Wpływ rodzaju cementu i kruszywa drobnoziarnistego na właściwości zapraw
PL
W artykule przedstawiono wyniki badań zapraw cementowych na bazie kruszywa drobnoziarnistego naturalnego i kruszyw lekkich oraz dwóch rodzajów cementu. Celem badań było wykazanie wpływu tych składników na właściwości zarówno mieszanki, jak i stwardniałej zaprawy, a ich rezultat pozwolił ocenić właściwości fizykomechaniczne, w tym także termoizolacyjne. W badaniach potwierdzono, że specyficzna tekstura powierzchni i budowa wewnętrzna ziaren kruszywa drobnoziarnistego wyraźnie różnicują właściwości zapraw, a rodzaj zastosowanego cementu, mimo tej samej klasy wytrzymałości na ściskanie, także nie jest bez znaczenia.
EN
The article presents the results of the study on cement mortars with the usage of fine natural aggregates and lightweight aggregates and two types of cement. The aim of the study was to demonstrate the influence of these components on the properties of the mixture as well as hardened mortar.The results allowed to evaluate the physico-mechanical properties, including also heat-insulating ones. The studies confirmed that the specific texture of the surface and internal structure of grains of fine aggregate clearly differentiate the properties of mortars. Moreover, also the type of cement used, although of the same class of compressive strength, is not without significance.
EN
Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80-90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.
PL
Beton jest popularnym materiałem budowlanym przygotowywanym przy użyciu lokalnie dostępnych materiałów, takich jak tłuczeń kamienny, piasek i woda. Cement natomiast jest fabrycznie produkowanym składnikiem łączącym wszystkie te materiały. Materiały są dostosowane do wymagań, dobrze wymieszane i umieszczone w formie szalunkowej. Po około 18 do 24 godzin, usuwa się formę szalunkową, a beton pozostawia się do stwardnienia, jednocześnie pielęgnując go poprzez polewanie wodą przez około 28 dni lub aż do dnia badania. W miarę wydobywania tłucznia kamiennego oraz piasku z naturalnych źródeł, wykorzystywanie tych materiałów na dużą skalę nie tylko wyczerpuje źródła, ale również negatywnie wpływa na środowisko. Zbadanie alternatyw dla tych materiałów okazuje się być tym bardziej konieczne. Obecnie działalność człowieka generuje duże ilości odpadów przemysłowych, rolniczych, itp. Jednym z takich odpadów przemysłowych jest popiół denny otrzymywany z elektrowni cieplnych po spalaniu węgla w procesie wytwarzania energii elektrycznej. Struktura popiołu dennego uznaje się za podobną do piasku rzecznego, używanego jako drobne kruszywo do wytwarzaniu betonu. Charakterystyka popiołu dennego nie wszędzie wygląda tak samo, ponieważ właściwości węgla również zmieniają się w zależności od miejsca. Popiół denny z węgla brunatnego uzyskano z elektrociepłowni Neyveli Thermal Power Plant w Indiach i wykorzystano w badaniu eksperymentalnym, jako drobne kruszywo do przygotowania betonu. Popiół denny został użyty w celu zastąpienia piasku rzecznego według wskaźnika 25%, 50% i 100%. Określono właściwości fizyczne i chemiczne popiołu dennego.
PL
Recyrkulacja wody, osiągnięcie jak najmniejszej wielkości ziarna podziałowego w urządzeniach klasyfikujących , maksymalne odwodnienie produktu oraz uzyskanie kruszyw drobnych, znajdujących nowe zastosowania… Z tych to powodów coraz częściej na kopalniach wykorzystywane są węzły klasyfikacji i odwodnienia produktów z zabudowanymi hydrocyklonami.
PL
Program badawczy omówiony w artykule był skupiony na zastosowaniu odpadowego miału ceramicznego jako zamiennika naturalnego piasku. Ze względu na coraz większe trudności w pozyskiwaniu kruszyw naturalnych do produkcji betonu konieczne jest stosowanie materiałów zastępczych, takich jak gruz ceramiczny lub betonowy. W programie badawczym zastosowano z sukcesem odpadowy miał ceramiczny jako częściowy zamiennik naturalnego piasku polodowcowego w kompozytach cementowych modyfikowanych włóknami stalowymi. Do modyfikowania matrycy cementowej wykorzystano dwa rodzaje włókien stalowych zakończonych haczykami, które dozowano w ilości 0,5%, 1,0% i 1,5% objętościowo. Zbadano takie cechy mechaniczne jak: wytrzymałość na ściskanie; wytrzymałość na rozciąganie przy rozłupywaniu; wytrzymałość na ścinanie; moduł sprężystości; wytrzymałość na rozciąganie przy zginaniu; cztery rezydualne wytrzymałości na rozciąganie przy zginaniu oraz prędkość fali ultradźwiękowej.
EN
The research programme presented in the paper focuses on harnessing waste ceramic fume as a replacement of natural sand. Due to growing lack of available natural aggregates for concrete production there is an urgent need for using substitute materials such as aggregate based on ceramic or concrete debris. In the research programme ceramic fumewas successfully used as a partial replacement of natural postglacial sand in a cement composite modified by steel fibre. There were used two types of hooked fibre. The matrix was modified by three different volumes of fibre (0.5%, 1.0% and 1,5% by volume). Mechanical properties such as: compressive strength, tensile splitting strength, shear strength, modulus of elasticity, flexural strength, four residual tensile strengths and ultrasonic pulse velocity were tested.
EN
Cement composites (concrete, mortar, plaster, slurry) are most commonly applied construction materials in the world. Focusing to the environmental pollution problem we are bearing in mind the necessity of a balanced engineering process while applying cement composites. A lot of attention is drawn to the production of cement characterized by large energy consumption (about 4GJ per ton) and a significant carbon dioxide footprint (about 1 tonne of CO2 emissions per tonne of cement). The worldwide production of cement accounts for almost 7% of total world CO2 emissions [10]. However, it is very often forgotten that the main component of cement composite is aggregate which covers from 60% to 80% of cement composite volume. Global annual production of concrete, mortar and other cement based composites consumes 20 billion tonne of different aggregate. It means that about 3 tonne of aggregate is used per person per year, which considerably influences natural environment, especially in developing countries.
PL
Niniejszy artykuł dotyczy kompozytów cementowych wykonanych na bazie kruszyw odpadowych uzyskanych w trakcie procesu hydroklasyfikacji pospółki na Pomorzu Środkowym w północnej Polsce. Na świecie mamy do czynienia z licznymi regionami o małych zasobach naturalnych kruszyw grubych, które są podstawowym surowcem służącym do produkcji betonu zwykłego. W tych regionach zamiast kruszyw grubych występują często duże złoża kruszyw drobnych takich jak piasek i pospółka. Kruszywa drobne mogą być stosowane do produkcji betonu zwykłego o przeciętnych cechach mechanicznych. Produkcja betonu w oparciu o lokalnie dostępne kruszywa drobne jest tania, co zachęca do produkcji takich betonów, zamiast betonów wykonanych w oparciu o kruszywa grube transportowane z odległych kopalń.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.