Full-length bonded bolts are widely used in deep mining engineering and an in-depth understanding of their mechanical characteristics under complex and high ground stress conditions is of great significance for deep roadway support systems. Based on a quantitative GSI rating system of surrounding rocks and rock nonlinear dilatancy angle model, a nonlinear dilatancy angle model suitable for jointed rocks was developed. The Hoek-Brown strain-softening model parameters were transformed into equivalent Mohr-Coulomb strength parameters, and a numerical model of the deep roadway was constructed using FLAC3D numerical simulation software as a tool. The force characteristics of full-length bonded anchors under different constitutive model and dilatancy angle model conditions were analyzed, and the effects of different lengths of anchors on the stability of the surrounding rock were studied. The obtained results revealed a big difference between the axial forces of bolts calculated by strain-softening and ideal elastic-plastic models. It was also found that bolt shear force was less influenced by the strain-softening behaviors of surrounding rocks. Dilatancy angle greatly affected bolt axial force. Therefore, if the dilatancy angle was neglected, great errors would be created in the calculation results of supporting structure designs. The nonlinear dilatancy angle model of jointed rock masses more accurately captured the stress properties of bolts after field monitoring and analysis. The findings of the study can serve as a guide for calculating the stability of surrounding rocks in deep mining engineering.
W polskich kopalniach węgla kamiennego od dziesiątek lat wyrobiska korytarzowe zabezpieczane są głównie obudowami wykonanymi z łukowych podatnych odrzwi ŁP. Obudowy takie stosuje się również w wyrobiskach komorowych oraz w odgałęzieniach i skrzyżowaniach wyrobisk korytarzowych. Podstawowym sposobem zabezpieczania wyrobisk korytarzowych przed skutkami wstrząsów górotworu jest zagęszczanie odrzwi obudowy ŁP, stosowanie specjalnych strzemion hamujących w złączach oraz wzmacnianie odrzwi za pomocą podciągów, stojaków itd. Działania te nie poprawiają jednak w sposób znaczący dynamicznej nośności obudowy ŁP, której wartość jest o kilkadziesiąt procent mniejsza od jej nośności statycznej. Wszystko to powoduje znaczne zwiększanie kosztu obudowy, a jednocześnie pogarszanie się przepustowości wyrobisk, w których gwałtownie wzrasta liczba stalowych elementów utrudniających transport materiałów i urobku W kopalniach węgla kamiennego zagrożonych wstrząsami górotworu stosuje się również obudowę podporowo-kotwiową, złożoną najczęściej z odrzwi obudowy ŁP, której elementy są przykatwiane do górotworu lub obudowa kotwiowa stanowi dodatkowe wzmocnienie górotworu pomiędzy odrzwiami obudowy ŁP. Wykorzystuje się w tym celu głównie kotwie wklejane, które spajają skały otaczające wyrobisko i powodują, że zwiększa się samonośność górotworu, co w znacznym stopniu poprawia współpracę i nośność układu obudowa-górotwór. W wyrobiskach chodnikowych nie stosuje się jednak samodzielnej obudowy kotwiowej, pomimo że doświadczenia górnictwa takich krajów, jak RPA, Kanada i Chile wykazują, że obudowa kotwiowa może być stosowana w warunkach dużej aktywności sejsmicznej górotworu. Podczas obliczania konstrukcji obudowy górniczej konieczne jest określenie skutków, jakie mogą wywołać krótkotrwałe obciążenia dynamiczne, zwane inaczej obciążeniami udarowymi. Konieczność uwzględniania zagadnień dynamiki konstrukcji wynika z faktu, że obciążenia udarowe mogą wywoływać stany ekstremalne konstrukcji, decydujące o jej bezpieczeństwie. Stany ekstremalne mogą być lokalne lub dotyczyć całej konstrukcji, a wywołujące je obciążenia udarowe, nawet o stosunkowo małych wartościach, mogą spowodować powstanie znacznie większych sił wewnętrznych i przemieszczeń niż pod działaniem większych obciążeń statycznych. W związku z powyższym w Głównym Instytucie Górnictwa rozpoczęto badania mające na celu określenie charakterystyki pracy kotwi przy obciążeniach dynamicznych, wyznaczenie ilościowych kryteriów oceny kotwi, a następnie dostosowanie ich konstrukcji do powyższych warunków. Badania kotwi przy obciążeniach dynamicznych miały początkowo charakter badań modelowych a obecnie prowadzone są badania kotwi w skali naturalnej. Celem tych badań jest określenie udarowej odporności kotwi powszechnie stosowanych w kopalniach węgla kamiennego i rud oraz optymalizacja ich konstrukcji do określonych warunków geologicznych. W artykule przedstawiono pierwsze wyniki badań kotwi rozprężnych, na podstawie których określono ich odporność udarową. Badania kotwi w skali naturalnej przeprowadzono w stanowisku Laboratorium Badań Urządzeń Mechanicznych GIG zlokalizowanym w Łaziskach. Metoda badania kotwi zabudowanej w stanowisku badawczym polega na jednokrotnym obciążeniu jej siłą dynamiczną za pomocą udaru spadającej masy z równoczesnym pomiarem obciążenia, przemieszczenia i czasu. Kotew powinna przenieść obciążenie dynamiczne udarem masy o zadanej energii bez zniszczenia jej elementów składowych, a maksymalne przemieszczenie (wydłużenie + wysuw z otworu) przy takim udarze nie może być większe niż 0,5 m. Powyższa wartość energii odpowiada udarowej odporności kotwi. Ponadto, w artykule przedstawiono wyniki tensometrycznych badań odkształcenia względnego εr żerdzi (dla wybranego typu kotwi) obciążonych udarem masy. Badania te prowadzono za pomocą: tensometrów naklejonych w środku długości żerdzi. Tensometry pracowały w układzie 1/2 mostka, z jednym tensometrem czynnym i jednym kompensującym wpływy temperaturowe. Zasadniczym elementem układu pomiarowego, stosowanego w tych badaniach, był wzmacniacz pomiarowy typu DMCplus firmy Hottinger Baldwin Messtechnik. Do obsługi wzmacniacza pomiarowego użyto programu komputerowego DMCLabplus, natomiast do analizy sygnałów pomiarowych użyto programów CATMAN oraz OriginPro 6.1.
EN
In Polish hard coal mines from decades road workings are protected mainly by support composed of arch yielding LP frames. The above-mentioned support is used also in chamber workings as well as in roadway junctions and rod working crossings. The fundamental way to protect road workings against the effects of mining tremors is the concentration of LP support frames, use of special braking clamps in joints and strengthening of frames by means of stringers, props etc. These actions, however, do not improve in a significant manner the dynamic load-bearing capacity of LP support, the value of which is by several dozens of per cent lower than its static load-bearing capacity. All those factors cause a significant growth of support cost, and simultaneous worsening of the capacity of workings, where impetuously increases the number of steel elements, making difficult the transport of materials and mined coal. In hard coal mines subject to mining tremors one uses also standing-bolting support, composed most often of LP support frames, the elements of which are bolted to the rock mass, or roof bolting constitutes additional reinforcement of the rock mass between LP support frames. One uses to this end mainly adhesive bolts, which bond the rocks surrounding the working and cause that increases the self-load capacity of the rock mass, what to a significant extent improves the cooperation and load-bearing capacity of the system support-rock mass. In road workings, however, independent roof bolting is not applied, in spite of the fact, that experience regarding the mining industries of such countries as the Republic of South Africa, Canada, and Chile indicates that roof bolting can be used in conditions of intensive seismic activity of the rock mass. During the calculations of mining support construction it is necessary to determine the effects, that can cause dynamic loads of short duration, called differently impact loads. The necessity to take into consideration the problems of construction dynamics results from the fact that impact load can cause extreme states of construction deciding on its safety. Extreme conditions can be local and may concern the entire construction, and causing its impact load, even of relatively low value, can bring about the rise of considerably stronger internal forces and dislocations than under the influence of higher static loads. In connection with the above at the Central Mining Institute investigations were undertaken aiming at the determination of bolt work characteristic in case of dynamic loads, determination of quantitative criteria of bolt assessment, and next adaptation of bolt construction to the above-mentioned conditions. The tests of bolts in dynamic load conditions had initially the character of model tests; currently are conducted tests of bolts on a natural scale. The purpose of these tests is to determine the impact resistance of roof bolts commonly used in hard coal and ore mines as well as to optimise their construction for determined geological conditions. The article presents the first results of tests of roof bolts locked by firing an explosive charge, on the basis of which their impact resistance was determined. Bolt tests on a natural scale were carried out at the testing stand of the Testing Laboratory of Mechanical Devices of GIG, localised in Łaziska. The bolt testing method at a testing stand consists in its single-time dynamic force loading by means of the falling mass impact with simultaneous load, dislocation and time measurement. The bolt should transmit dynamic load by mass impact of given energy without destruction of its component elements, and the maximum dislocation (elongation + extension from the hole) in case of such impact cannot exceed 0.5 m. The above-mentioned energy value corresponds with the bolt impact resistance. Moreover, the article presents the results of extensometric tests of relative strain εr of the rod (for the selected bolt type) loaded by mass impact. These tests were carried out by help of extensometers glued in |the rod length centre. The extensometers worked in 1/2 bridge system, with one active extensometer and another one, compensating temperature influences. The fundamental element of the measuring system, used in these investigations, was the measuring amplifier of DMCplus type produced by the firm Hottinger Baldwin Messtechnik. For measuring amplifier service one has used the DMCLabplus program, while for the analysis of measuring signals the programs CATMAN and OriginPor 6.1 were used.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.