Purpose: This paper presents an approach towards improving the test rig performance for road signals used in automotive shock absorber tests. The goal is to develop a method for correction of the test signal profile in the off-line mode. The method is intended to be implemented as a software solution without any changes either in hardware or the settings of the servo-hydraulic tester. Design/methodology/approach: A two-stage validation of the proposed correction method was conducted using a servo-hydraulic test rig and its first-principles model. The model is capable of capturing key dynamical properties over a wide operating range while being only moderately complex. Both simulation and experimental performance results are presented and discussed. Findings: The proposed method, both in the frequency and time domain, improves the tracking of the test signal by 10-20% and allows an accuracy of more than 90% to be gained using the best fit measure in the case of reproduction of white noise signals. Research limitations/implications: It is possible to consider more advanced model-based methods for performing off-line error correction. These methods can be used if an accuracy close to 100% is expected. Practical implications: The result of the investigations is the algorithm implemented in the LabView software to automatically perform the correction of the test signal before the test. Originality/value: The paper proposes a modern approach towards the validation process by applying a simulation environment. This ensures the involvement of arbitrary disturbance models to investigate key parameters of the correction method without expensive and time-consuming experimental validation. The developed model can be extended to a model of a shock absorber to simulate full interaction between the servo-hydraulic test rig and the tested product.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.