Celem badań opisanych w artykule było przetestowanie wybranych metod korekcji obrazów cyfrowych pod kątem optymalizacji ich automatycznego pomiaru. Główny nacisk został położony na zbadanie przekształceń punktowych (wyrównanie kontrastu i histogramu) i kontekstowych (filtracja liniowa i nieliniowa). Ze względu na dostępne narzędzia programowe badano użycie filtracji dla celów optymalizacji automatycznego pomiaru w dwu najpopularniejszych zastosowaniach: detekcja i pomiar tych samych obiektów na dwu lub więcej obrazach z zastosowaniem autokorelacji oraz pomiar elementów liniowych. Pierwsza część doświadczeń dotyczyła zmian, jakie zachodzą w wartości współczynnika korelacji między dwoma przekształcanymi obrazami cyfrowymi oraz rozbieżności między położeniem punktu obrazu znajdowanego przez obserwatora a obrazem znajdowanym przez autokorelację na przefiltrowanych obrazach. W wyniku badań stwierdzono, że użycie filtrów : uśredniającego i medianowego wpływa znacznie na zwiększenie korelacji między badanymi miejscami, natomiast filtr dolnoprzepustowy LP1 daje najbliższe manualnemu wyniki pomiaru. W drugiej części badań dotyczących wpływu filtracji na detekcję elementów liniowych wykorzystano filtry górnoprzepustowe i krawędziujące. Jako miarę jakości filtracji przyjęto dwa parametry: korelacyjny współczynnik wyznaczenia prostej, który porównuje szacunkowe i rzeczywiste wartości współrzędnych oraz odchylenie standardowe punktów od estymowanej prostej. Wyniki obliczeń wykazały, że optymalnym z badanych filtrów okazał się filtr Laplace’a.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.