In this study, an adaptive neuro fuzzy inference system (ANFIS) based inverse controller design is presented for liquid level control application of a spherical tank. First, an excitation signal is applied to the system and the corresponding output signal is obtained. ANFIS-based fuzzy model of the nonlinear spherical tank system is constructed by using this input-output data set. While constructing the fuzzy model, a fuzzy model structure with two inputs and one output is preferred considering design simplicity. The input-output data used for constructing the fuzzy model of the system are exchanged, and by using this new data set, an ANFIS based inverse controller is designed. To improve the control performance against disturbances and model mismatches, the inverse controller is used in an internal model control structure. The performance of the proposed controller is compared to that of classical PI and fuzzy PI controllers under set point variation and disturbance conditions. The results of comparisons reveal that the proposed inverse controller outperforms both the classical and fuzzy PI controllers.
PL
W niniejszym opracowaniu przedstawiono projekt regulatora odwrotnego opartego na adaptacyjnym neurorozmytym systemie wnioskowania (ANFIS) do zastosowania w kontroli poziomu cieczy w zbiorniku kulistym. Najpierw do systemu doprowadzany jest sygnał wzbudzenia i uzyskiwany jest odpowiedni sygnał wyjściowy. Oparty na ANFIS model rozmyty nieliniowego systemu zbiorników sferycznych jest tworzony przy użyciu tego zestawu danych wejściowych i wyjściowych. Podczas konstruowania modelu rozmytego preferowana jest struktura modelu rozmytego z dwoma danymi wejściowymi i jednym wynikiem, biorąc pod uwagę prostotę projektowania. Dane wejściowe-wyjściowe wykorzystywane do budowy modelu rozmytego systemu są wymieniane, a przy użyciu tego nowego zestawu danych projektowany jest sterownik odwrotny oparty na ANFIS. W celu poprawy wydajności sterowania w przypadku zakłóceń i niezgodności modelu, w wewnętrznej strukturze sterowania modelu zastosowano regulator odwrotny. Wydajność proponowanego regulatora jest porównywana z klasycznymi regulatorami PI i rozmytymi regulatorami PI w warunkach zmienności wartości zadanej i zakłóceń. Wyniki porównań pokazują, że proponowany regulator odwrotny przewyższa zarówno klasyczne, jak i rozmyte regulatory PI.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.