Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kontrola odporna na awarie
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The iterative learning fault-tolerant control strategies with non-strict repetitive initial state disturbances are studied for the linear discrete networked control systems (NCSs) and the nonlinear discrete NCSs. In order to reduce the influence of the initial state disturbance in iteration, for the linear NCSs, considering the external disturbance and actuator failure, the iterative learning fault-tolerant control strategy with impulse function is proposed. For the nonlinear NCSs, the external disturbance, packet loss and actuator failure are considered, the iterative learning fault-tolerant control strategy with random Bernoulli sequence is provided. Finally, the proposed control strategies are used for simulation research for the linear NCSs and the nonlinear NCSs. The results show that both strategies can reduce the influence of the initial state disturbance on the tracking effect, which verifies the effectiveness of the given method.
EN
Modern induction motor (IM) drives with a higher degree of safety should be equipped with fault-tolerant control (FTC) solutions. Current sensor (CS) failures constitute a serious problem in systems using vector control strategies for IMs because these methods require state variable reconstruction, which is usually based on the IM mathematical model and stator current measurement. This article presents an analysis of the operation of the direct torque control (DTC) for IM drive with stator current reconstruction after CSs damage. These reconstructed currents are used for the stator flux and electromagnetic torque estimation in the DTC with space-vector-modulation (SVM) drive. In this research complete damage to both stator CSs is assumed, and the stator current vector components in the postfault mode are reconstructed based on the DC link voltage of the voltage source inverter (VSI) and angular rotor speed measurements using the so-called virtual current sensor (VCS), based on the IM mathematical model. Numerous simulation and experimental tests results illustrate the behavior of the drive system in different operating conditions. The correctness of the stator current reconstruction is also analyzed taking into account motor parameter uncertainties, especially stator and rotor resistances, which usually are the main parameters that determine the proper operation of the stator flux and torque estimation in the DTC control structure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.