Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kontakt trójfazowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Kinetics of the three phase contact (TPC) formation and phenomena occurring during collision of the rising bubble with Teflon plates of different surface roughness were studied in distilled water, α-terpineol and n-octanol solutions, using a high-speed camera of frequency 1040 Hz. Influence of solution concentration and surface roughness on time of the TPC formation and the time of drainage of the film formed between the colliding bubble and Teflon surface was determined. The surface roughness of the Teflon plates was varied within range 1- 100 µm. It was found that at small α-terpineol and n-octanol concentrations the time of the TPC formation was shortened in respect to distilled water. However, at their high concentrations the time of TPC formation was again longer and magnitude of this effect depended on the surface roughness. For example for Teflon surface of roughness 40-60 µm the time of TPC formation was even 20-30 ms longer. The data obtained indicate that this effect is related to presence of air at the hydrophobic solid surfaces. The mechanism of this prolongation of the time of TPC formation due to the frother overdosage is proposed.
PL
Badano kinetykę powstawania kontaktu trójfazowego podczas kolizji pęcherzyka w wodzie i w roztworach α-terpineolu i n-oktanolu z płytkami Teflonowymi o różnej szorstkości powierzchniowej, przy użyciu szybkiej kamery o częstotliwości 1040Hz. Określono wpływ stężenia substancji powierzchniowo aktywnych i szorstkości powierzchniowej na czas powstawania kontaktu trójfazowego i czas wyciekania cienkiego filmu ciekłego powstającego pomiędzy pęcherzykiem i powierzchnią Teflonu. Szorstkość powierzchniowa Teflonu była modyfikowana w zakresie 1-100 µm. Wykazano, że w roztworach o małych stężeniach α-terpineolu i n-oktanolu czas powstawania kontaktu trójfazowego uległ skróceniu w porównaniu do wartości zmierzonych w czystej wodzie. Jednakże, przy wysokich stężeniach badanych spieniaczy następowało znowu wydłużenie czasu powstawania kontaktu trójfazowego, a wielkość tego efektu była uzależniona od szorstkości powierzchni płytki teflonowej. Przykładowo dla płytki teflonowej o szorstkości powierzchniowej 40-60 µm czas powstawania kontaktu trójfazowego uległ wydłużeniu nawet o 20-30 ms. Wyniki uzyskane wskazują, że efekt ten jest związany z obecnością powietrza na hydrofobowej powierzchni ciała stałego. W pracy przedstawiono mechanizm wydłużenia czasu powstawania kontaktu trójfazowego przy nadmiernej dawce spieniacza.
EN
Influence of adsorption of n-alkyltrimethylammonium bromides (C8, C12, C16) and formation of motion induced dynamic architecture of adsorption layer (DAL) over surface of the colliding bubble on kinetics of three-phase contact (TPC) formation at mica surface was studied. The dynamic phenomena occurring during the bubble collisions were monitored using a high-speed camera of frequency 1040 Hz. The effect of solution concentration and the DAL formation, due to the bubble motion, was determined. It was showed that stability of the wetting film formed between the colliding bubble and mica surface was governed by the electrostatic interactions between the film interfaces. It was found that when the distance covered by the bubble (i.e. the distance between the capillary and the mica surface) was L=3 mm (location "close") then the time of the three phase contact formation (tTPC), was significantly shorter than for the L=100 mm (location "far"). The differences between the tTPC for the locations "close" and "far" were the largest at lowest concentration. The mechanism responsible for significant differences in the tTPC values for the location "close" and "far" is described.
PL
Badano wpływ adsorpcji n-alkilotrimetyloamoniowych bromków (C8, C12, C16) oraz utworzenia na powierzchni pęcherzyka, ruchem indukowanej dynamicznej architektury warstwy adsorpcyjnej (DAL), na kinetykę powstawania kontaktu trójfazowego (TPC) na powierzchni miki. Zjawiska zachodzące podczas kolizji pęcherzyka były rejestrowane przy użyciu szybkiej kamery o częstotliwości 1040 Hz. Określono wpływ stężenia roztworów i utworzenia DAL na kinetykę powstawania TPC. Wykazano, że stabilność ciekłego filmu, powstającego w trakcie kolizji pomiędzy pęcherzykiem a powierzchnią miki, jest determinowana przez siły elektrostatyczne pomiędzy granicami faz, które tworzą ciekły film. Kiedy pęcherzyk pokonywał odległość (od kapilary do powierzchni miki) L=3 mm (lokalizacja "blisko") czas powstawania kontaktu trójfazowego był znacznie krótszy, w porównaniu z odległością L=100 mm ("daleko"). Różnice obserwowane dla L=3 mm i L=100 mm wzrastały wraz ze zmniejszeniem stężenia. Przedstawiono mechanizm wyjaśniający znaczące różnice w czasie powstawania kontaktu trójfazowego dla położenia "blisko" i "daleko"
3
Content available remote Natural hydrophobicity and flotation ff fluorite
EN
The free ascending bubble–fluorite surface collision test showed that the three phase contact (TPC) was formed and time of the TPC formation was strongly affected by the roughness of the fluorite surface. The time of the TPC formation varied by an order of magnitude, from ca. 20 to 200ms, depending on the fluorite origin and surface roughness. The fact that the TPC was formed shows that fluorite can be considered as a naturally hydrophobic material. The contact angle formed by the bubble attached to fluorite plate was found to be 40 st. in comparison to 10-25 st. measured by flotometry and 55 st. by sessile drop. Thus, the macroscopic contact angle of fluorite depends on the method of measurement as well as its origin and color since colorless fluorites float better. Hydrophobicity of fluorite and the time of the three phase contact formation influence its flotation. The best flotation is observed in Hallimond tubes while flotation is significantly reduced or absent in laboratory flotation machines. This is very likely a result of relatively long time of the TPC formation and/or low hydrophobicity of fluorite, which is not enough to withstand the detachment force during enhanced hydrodynamics of larger flotation devices.
PL
Badania kolizji swobodnie wznoszącego się pęcherzyka z powierzchnią mineralną zanurzoną w wodze wykazały, że czas tworzenia się kontaktu trójfazowego silnie zależy od chropowatości powierzchni fluorytu. W zależności od chropowatości powierzchni fluorytu, czas kontaktu wynosił od 20 do 200ms. Tworzenie się kontaktu trójfazowego świadczy o naturalnej hydrofobowości fluorytu. Kąt zwilżania tworzony pomiędzy pęcherzykiem powietrza a płaska płytka fluorytową zanurzoną w wodzie wynosił 40 st. w porównaniu do wartości 10-15 st. uzyskanych metodą fotometryczną i 55 st. uzyskaną metodą siedzącej kropli. Zatem makroskopowy kąt zwilżania dla fluorytu zależy od metody pomiaru oraz pochodzenia próbki, a nawet jego koloru, gdyż barwne odmiany flotują lepiej. Hydrofobowość fluorytu oraz czas tworzenia się kontaktu trójfazowego wpływają na flotację. Najlepszą flotację obserwuje się w celce Hallimond, podczas gdy flotacja w mechanicznej maszynce laboratoryjnej jest znacząco zredukowana z powodu względnie długiego czasu tworzenia się kontaktu trójfazowego i/lub słabą hydrofobowością fluorytu, który nie wytrzymuje zwiększonych sił odrywania występujących w większych maszynach flotacyjnych.
EN
The paper presents results and analysis of influence of hydrophobic surface roughness on apparent contact angle values (equilibrium conditions) and time of the bubble attachment (dynamic conditions) to hydrophobic solid surfaces (Teflon) of different roughness. The surface roughness of Teflon plates was modified in a mechanical way using abrasive papers and/or diamond paste of different grid numbers. Measurements of contact angles were carried out by the sessile drop technique, while the time of three phase contact (TPC) formation and the bubble attachment were determined in a course of the bubble collisions with Teflon plates, using a high speed camera (1182 Hz). It was found that the surface roughness is an important parameter affecting both quantities determined. With increasing surface roughness the static contact angle was increasing, while the time needed for TPC formation and the bubble attachment was significantly shortened, from ca. 80 to 3 ms. Air entrapped inside surface scratches seems to be a reason of these effects. With increasing roughness a larger amount of air can be entrapped inside the scratches. This hypothesis is confirmed by measurements of the diameters of contact perimeter of the attached bubble, where it was found that the perimeter increases with the surface roughness.
PL
W pracy przedstawiono wyniki i analizę wpływu szorstkości powierzchni hydrofobowej na wielkości wstępujących kątów zwilżania (warunki równowagowe) oraz na czas potrzebny do przyczepienia bańki (warunki dynamiczne) do hydrofobowej powierzchni ciała stałego (teflon). Szorstkość powierzchni płytek teflonowych była modyfikowana mechanicznie przy użyciu papieru ściernego o różnym uziarnieniu oraz pasty diamentowej. Pomiary kątów zwilżania wykonano metodą “siedzącej” kropli (sessile drop) a czas powstawania kontaktu trójfazowego (TPC) i przyczepienia bańki był wyznaczany przy zastosowaniu szybkiej kamery (1182 Hz). Wykazano, że szorstkość powierzchni jest parametrem mającym olbrzymi wpływ na obie badane wielkości. Ze wzrostem szorstkości powierzchni wzrastały wartości kąta zwilżania, a czas potrzebny do utworzenia TPC i przyczepienia bańki ulegał znacznemu skróceniu, od ok. 80 ms do 3 ms. Ponieważ ze wzrostem szorstkości zwiększa się ilość powietrza ”uwięzionego” wewnątrz nierówności powierzchniowych dlatego wydaje się, że jest to czynnik decydujący o zmianach wielkości kąta zwilżania i wartości czasu potrzebnego do utworzenia TPC. Potwierdzeniem poprawności tej hipotezy są także przedstawione w pracy wyniki pomiarów średnic perymetru przyczepionej bańki. W pomiarach tych wykazano, że ze wzrostem szorstkości wzrasta średnica perymetru bańki przyczepionej do powierzchni teflonu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.