Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 29

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  konstrukcja szklana
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
2
Content available remote Elementy niezawodności konstrukcji szklanych w dokumentach CEN
PL
Badania prowadzone w krajach Unii Europejskiej doprowadziły do sformułowania nowych zasad obliczeń konstrukcji szklanych zredagowanych w dokumentach roboczych CEN. Procedury obliczeniowe CEN wymagają weryfikacji krajowej. Artykuł ograniczono do analizy elementów niezawodności konstrukcji szklanych. Przeprowadzona weryfikacja wskazuje, że oceniane procedury w zakresie wymagań niezawodności są kompletne i w pełni zharmonizowane z Eurokodami.
EN
The research conducted in the European Union countries led to the formulation of a new form of calculations for glass structures, formulated in CEN working documents. The CEN calculation procedures require national verification and this is the nature of the article, the scope of which is limited to the analysis of the reliability elements of glass structures. The performed verification shows that the assessed procedures in the scope of reliability requirements are complete and fully harmonized with the Eurocodes.
EN
Glass is a material commonly used in construction. The development of technology related to it, and the increase in knowledge concerning its mechanical and strength properties offer opportunities for glass to be applied as a structural material. The advancement in glass structures, methods for their design, as well as guidelines and standards in this fields are being developed in parallel. This article describes the main assumptions contained in the German TRxV guidelines, the series of German DIN 18008 standards, and the European EN 16612, and EN 16613 standard. Moreover, the following article presents the concept of structural glass design included in the draft pre-standard prCEN/TS 19100, which provides the basis for the formulation of the European standard Eurocode 10. According to this pre-standard, structural elements of glass will be verified in four limit states, depending on the Limit State Scenario (LSS). Apart from the classic limit states, i.e., the ultimate limit state (ULS), and the serviceability limit state (SLS), it is also assumed to introduce a fracture limit state (FLS), and post-fracture limit state (PFLS). The article also addresses the issue of laminated glass working in structural elements. Depending on the coupling between the glass panes and the polymer or ionomer interlayers, laminated glass can be divided into complete coupled or uncoupled, and can work in intermediate situations. The methods for determining the effective thickness contained in European standards and guidelines are discussed in this article.
PL
Szkło jest materiałem powszechnie stosowanym w budownictwie. Rozwój jego technologii oraz wzrost wiedzy dotyczącej właściwości mechanicznych i wytrzymałościowych sprzyja również możliwościom stosowania szkła jako materiału konstrukcyjnego. Konstrukcyjne zastosowanie szkła jest szczególnie istotne dla kształtowania rozwiązań architektonicznych, w których transparentność stanowi szczególną cechę estetyczną. Wraz z rozwojem konstrukcji szklanych są opracowywane metody ich projektowania oraz wytyczne i normy w tym zakresie. W artykule scharakteryzowano podstawowe właściwości szkła jako materiału konstrukcyjnego. Ponadto omówiono główne założenia wytycznych niemieckich TRxV, serii niemieckich norm DIN 18008 oraz norm europejskich (mających również status polskich norm) PN-EN 16612 wraz z EN 16613. Artykuł przedstawia także koncepcję projektowania szkła konstrukcyjnego zawartą w projekcie normy CEN/TS 19100, która stanowi podstawę opracowania zharmonizowanej normy Europejskiej - Eurokodu 10 dotyczącego projektowania konstrukcji szklanych. Zgodnie z tą prenormą szklane elementy konstrukcyjne będą weryfikowane ze względu na ich bezpieczeństwo w oparciu o cztery stany graniczne w zależności od tzw. klasy konsekwencji pęknięć. Oprócz klasycznych stanów granicznych, tj. stanu granicznego nośności i stanu granicznego użytkowalności, zakłada się również wprowadzenie stanu granicznego pęknięcia i stanu granicznego po pęknięciu. W artykule poruszono także kwestię pracy szkła laminowanego w elementach konstrukcyjnych. W zależności od stopnia zespolenia tafli szklanych i międzywarstw polimerowych lub jonomerowych, można wyróżnić szkło laminowane całkowicie zespolone, lub niezespolone, a także pracujące w sytuacjach pośrednich. Biorąc pod uwagę charakter pracy szkła laminowanego, przy jego projektowaniu oblicza się tzw. grubość efektywną. W artykule omówiono metody wyznaczania grubości efektywnej zawarte w europejskich normach i wytycznych.
EN
The implementation of a new, high-performance float flat glass manufacturing technology in Europe, in conjunction with the growing interest in new glass functions expressed by the construction industry, has led to significant developments in the theory of glass structures. Long time research conducted in the EU countries has been concluded by the technical document CEN/TC 250 N 1060, drawn up as a part of the work of the European Committee for Standardization on the second edition of Eurocodes (EC). The recommendations pertaining to the design of glass structures have been foreseen in the second edition of the Eurocodes, in particular the development of a separate design standard containing modern procedures for static calculations and stability of glass building structures (cf. works M. Feldmann, R. Kasper, K. Langosch and other). In this paper new static analysis methods for glass plates made of monolithic and laminated glass, declared in the document CEN/TC 250 N 1060 (2014) and recommended in the national standarization document CNR-DT 210 (National Research Council of Italy, 2013) are presented. These static analysis methods are not commonly known in our national engineering environment, and thus require popularization and regional verification. Numerical and analytical simulations presented in this paper for rectangular plates made of monolithic and laminated glass and having various support conditions are of this character. The results of numerical calculations constitute a basis for the discussion of new static analysis methods for plates.
PL
Wdrożenie w Europie nowej, wysokowydajnej technologii produkcji szkła płaskiego float, w powiązaniu z rosnącymi wymaganiami budownictwa, dotyczącymi nowych funkcji szkła, doprowadziło do znaczącego rozwoju teorii konstrukcji szklanych. Wieloletnie badania naukowe prowadzone w krajach Unii Europejskiej zostały zwieńczone dokumentem technicznym CEN/TC 250 N 1060, zredagowanym w ramach prac Europejskiego Komitetu Normalizacyjnego nad drugą edycją Eurokodów (EC). W drugiej edycji Eurokodów przewidziano rekomendacje w/z projektowania konstrukcji szklanych, a w szczególności opracowanie odrębnej normy projektowania, zawierającej nowoczesne procedury w zakresie obliczeń statycznych i stateczności konstrukcji budowlanych szklanych (por. prace M. Feldmann, R. Kasper, K. Langosch i inne). W artykule podano nowe metody analizy statycznej płyt ze szkła monolitycznego i laminowanego, zadeklarowane w dokumencie CEN/TC 250 N 1060 (2014) i rekomendowane w dokumencie normalizacyjnym krajowym CNR-DT 210 (Włoski Komitet Normalizacyjny, Włochy, 2013). Przywołane metody analizy statycznej płyt nie są w krajowym środowisku inżynierskim powszechnie znane dlatego wymagają popularyzacji i weryfikacji regionalnej. Taki charakter mają przeprowadzone w pracy symulacje analityczne i numeryczne dla płyt prostokątnych ze szkła monolitycznego i laminowanego, o różnych warunkach podparcia. Rezultaty obliczeń numerycznych stanowią podstawę przeprowadzonej dyskusji nowych metod analizy statycznej płyt.
EN
Development of contemporary building industry and related search for new aesthetical and functional solutions of monumental buildings in the centers of large cities resulted in the interest in glass as a structural material. Attractiveness of glass as a building material may be derived from the fact, that it combines transparency and aesthetical look with other functional features. Application of glass results in modern look of building facades, improves the indoor comfort without limiting the availability of natural daylight. Wide implementation of the new high performance float flat glass manufacturing technology, in conjunction with increasing expectations of the construction industry relating to new glass functions, has led to significant developments in glass structures theory, cf. [1, 3, 4, 5, 9, 10]. Many years of scientific research conducted in European Union countries have been crowned with a report CEN/TC 250 N 1050 [2], compiled as a part of the work of European Committee for Standardization on the second edition of Eurocodes - an extension of the first edition by, among others, the recommendations for the above mentioned design of glass structures, in particular modern procedures for the design of glass building structures. The procedures proposed in the pre-code [2] are not widely known in Poland, and their implementation in the design codes should be verified at the country level. This task is undertaken in this paper.
PL
Rozwój nowoczesnego budownictwa i związane z tym poszukiwanie nowych rozwiązań w zakresie estetyki i funkcjonalności budynków reprezentacyjnych w centrach dużych miast, stało się przyczyną zainteresowania szkłem. Atrakcyjność szkła jako materiału budowlanego wynika z faktu, że łączy ono w sobie przeźroczystość i estetyczny wygląd z innymi cechami użytkowymi. Jego zastosowanie nadaje nowoczesny wygląd elewacjom budynków i polepsza komfort przebywania w pomieszczeniach, nie ograniczając przy tym naturalnego oświetlenia dziennego, Wdrożenie nowej, wysokowydajnej technologii produkcji szkła płaskiego float, w powiązaniu z rosnącymi wymaganiami budownictwa, dotyczącymi nowych funkcji szkła, doprowadziło do znacznego rozwoju teorii konstrukcji szklanych, por. prace [1, 3, 4, 5, 9, 10]. Wieloletnie badania naukowe prowadzone w krajach Unii Europejskiej zostały zwieńczone opracowanym dokumentem CEN/TC 250 N 1050 [2], zredagowanym w ramach prac Europejskiego Komitetu Normalizacyjnego nad drugą edycją Eurokodów. W wydaniu tym zaproponowano poszerzenie pierwszej edycji między innymi o rekomendacje w/z projektowania konstrukcji szklanych, a w szczególności o nowoczesne procedury w zakresie obliczania konstrukcji budowlanych szklanych. W Polsce zaproponowane w prenormie [2] procedury nie są powszechnie znane, a ich implementacja do norm projektowania wymaga przeprowadzenia weryfikacji krajowej, co podejmuje niniejsza praca.
PL
Artykuł opisuje stan dokumentów normatywnych dotyczących zasad projektowania konstrukcji ze szkła budowlanego. W artykule przedstawiono przeglądowe informacje związane ze stanem prawnym tych dokumentów wraz z komentarzem i uwagami.
EN
The article describes the status of normative documents concerning the principles of designing construction made of construction glass. The article presents overview information related to the legal status of these documents along with comments and comments.
PL
Przedstawiono wybrane rozwiązania materiałowe i technologiczne obiektów budowlanych z konstrukcjami szklanymi. Na przykładach pokazano nowatorskie koncepcje, które sprostały wymaganiom formalnym i estetycznym.
EN
There were shown chosen material and technology solutions, used in the glazed constructions. On the concrete examples there were presented innovative conceptions, which were correct to formal and aesthetic requirements.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.