Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kompresja tekstur
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono propozycję wykorzystania sieci neuronowych komórkowych (SNK) do celów kodowania i rekonstrukcji obszarów tekstur jednorodnych, występujących w obrazach rzeczywistych. W proponowanym rozwiązaniu obraz tekstury podlega dekompozycji na trzy składowe - harmoniczną, kierunkową i stochastyczną - z użyciem zoptymalizowanego pod względem czasowym algorytmu, wykorzystującego znane twierdzenie Wolda, a następnie każda ze składowych podlega odrębnemu procesowi kodowania. Model SNK, o analogowym sposobie przetwarzania, został użyty do wydajnej kompresji i szybkiej rekonstrukcji części stochastycznej obrazu. W pracy przedstawiono architekturę SNK, twierdzenie Wolda, proponowany algorytm dekompozycji i kodowania tekstury oraz wyniki przeprowadzonych symulacji komputerowych. Dla szerokiej klasy tekstur osiągnięto lepszą jakość obrazów niż przy użyciu algorytmu JPEG. Poza tym, możliwość fizycznej realizacji SNK w postaci układu scalonego VLSI, pozwala na zastosowanie proponowanego algorytmu do rekonstrukcji obrazu w czasie rzeczywistym
EN
A method for texture coding using cellular neural networks (CNNs) has been proposed in the paper. The main idea of the method is to decompose homogenous texture image into three components: harmonic, evanescent and stochastic, based on the well-known Wold's theorem. The former two components are then coded in DFT domain, while the last one is modeled using appropriately derived CNN. Texture decomposition is carried out in DFT domain. The first part of the algorithm is extraction of harmonic component, which is represented by dominant magnitude spectrum fringes (either isolated or grouped in clusters). Next, the evanescent component, which is represented by continuous ridges of fringes, is extracted from the result of the first step of the algorithm, using the Hough transform. The residual DFT fringes are considered to constitute stochastic component of texture spectrum. In order to obtain high compression rates, each of the three components is being modeled separately. Coding of extracted harmonic and evanescent components is performed in DFT domain. The stochastic component of a texture is being coded through CNN parameters. The proposed idea of stochastic part coding is to derive appropriate CNN template that transforms 2-D white noise signal into desired stochastic component. This operation is being done in spatial domain. Cloning template elements for several textures have been determined. For the purpose of modeling of CNN physical implementation inaccuracies, all template elements are quantized using 256 levels. In order to evaluate the proposed texture coding idea, several computer simulations have been performed using a representative set of natural textures. It has been found that for images of size exceeding 32 by 32 pixels, the quality of resulting images was better than the quality of images encoded with JPEG algorithm for the comparable compression ratios (JPEG-2OOO algorithm has not been considered). The potential application of the presented idea is perceived in computer graphics applications for high-speed generation of stochastic component of the image, in such fields as multimedia libraries, DVD or Video on Demand technologies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.