Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kompozycja barwna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.
PL
Jedną z najbardziej dokładnych technologii pozyskiwania danych o terenie i jego pokryciu jest lotnicze skanowanie laserowe (ALS). W wieloletnim rozwoju skanerów laserowych dążono przez lata do osiągnięcia jak najwyższej dokładności pomiaru oraz jak największej gęstości danych, co związane było przede wszystkim z jakością danych i kosztami pracy. Obecnie istnieje kilka możliwości dalszego rozwoju tego typu systemów, wśród których wymienić należy zwiększanie zasięgu skanowania laserowego, a także rejestracja odbić w kilku zakresach spektralnych. Szczególnie ostatni trend w rozwoju technologii LIDAR pozwala na inne spojrzenie na dane w postaci chmur punktów, które jeszcze efektywniej mogą tworzyć mapy pokrycia terenu niż typowe lotnicze skanowanie topograficzne (ALS). W rozwoju lotniczego skanowania laserowego istotnym krokiem było pojawienie się lotniczego skanowania hydrograficznego (batymetrycznego). W różnych rozwiązaniach producentów, pojawił się laser o częstotliwości odpowiadającej zakresowi w paśmie zielonym światła widzialnego. Przy rejestracji intensywności zaobserwowanymi podczas skanowania różnymi skanerami laserem o różnej długości fali dla tego samego obszaru, dostrzeżono różne właściwości refleksyjnymi obiektów analogiczne do rejestracji w różnych zakresach spektralnych technikami pasywnymi. Sprawiło to, że w ostatnich latach pojawiły się pierwsze systemy skanowania lotniczego wykorzystujące więcej niż 2 zakresy spektralne w jednym skanerze. Od tego czasu można zatem mówić o multispektralnym lotniczym skanowaniu laserowym. Rejestracja chmur punktów w 3 zakresach spektralnych pozwala poza zapisem współrzędnych i innych atrybutów charakterystycznych dla skanowania topograficznego, na zapis również 3 wartości intensywności odbicia, co umożliwia tworzenie kompozycji barwnych w postaci true-orto obrazów. W artykule zaprezentowano przykładowy system multispektralnego lotniczego skanowania laserowego wraz z możliwościami, jakie dają dane nim pozyskane, poruszając kwestię gęstości danych, dokładności numerycznych modeli wysokościowych z nich tworzonych. W wyniku analiz udowodniono wysoką dokładność wzajemną rejestracji w poszczególnych kanałach spektralnych wynoszącą do 0.03 m. W analizie gęstości danych ukazano wpływ długości fali na gęstość chmury punktów. Rozpatrywana chmura punktów miała średnią gęstość 25, 23 i 20 punktów na metr kwadratowy odpowiednio dla lasera z zakresu pasma zielonego, bliskiej podczerwieni i średniej podczerwieni. W artykule poruszono także problematykę tworzenia kompozycji barwnych ortoobrazów z intensywności odbicia oraz możliwości klasyfikacji ich treści. W referacie poddano również dyskusji możliwość zastosowania danych z mutlispektralnego lotniczego skanowania laserowego w tworzeniu map pokrycia terenu w porównaniu z tradycyjnymi technikami fotogrametrycznymi.
PL
Rosnąca presja inwestycyjna na terenach leśnych powoduje zwiększanie się liczby obiektów budowlanych, w tym przede wszystkim budynków mieszkalnych, które powstają pomimo braku uzyskania przez ich właścicieli pozwolenia na budowę, czy też, w enumeratywnie wyliczonych przypadkach, zgody właściwego organu na rozpoczęcie procesu inwestycyjnego. Problem samowoli budowlanej na terenach leśnych dotyczy coraz większej liczby nadleśnictw w Polsce. Celem opracowania była detekcja budynków na terenach o znacznej lesistości, położonych w sąsiedztwie Parku Narodowego Gór Stołowych. Wybór metody detekcji budynków na terenie badań musiał uwzględnić przede wszystkim eliminację roślinności. W tym celu posłużono się danymi pochodzącymi z lotniczego skanowania laserowego oraz ortofotomapą CIR o rozdzielczości 0,6 m. Dane punktowe poddano kilku przetworzeniom, aby uzyskać obiekty o wysokości minimalnej 2 m. Do eliminacji roślinności wykorzystano wskaźnik NDVI (Normalized Differenced Vegetation Index). Analizę przeprowadzono na dwóch powierzchniach próbnych, gdzie obszar 1 wykorzystany został jako zbiór testowy, a obszar 2 jako weryfikujący. Przetworzenie materiałów przeprowadzone zostało w programie ArcGIS 10, gdzie stworzony został model detekcji budynków. Uzyskano dokładność detekcji budynków na poziomie: 80 %. Uzyskane wyniki w połączeniu z danymi z ewidencji gruntów i budynków pozwoliłyby na wskazanie potencjalnych lokalizacji samowoli budowlanych.
EN
Growing pressure for investment in forest areas will increase the number of buildings, including primarily residential buildings to be are built without necessary permits or, in the enumerated cases, consents of the competent authority to begin the investment process. The problem of illegal buildings in forest areas concerns an increasing number of forest districts in Poland. The purpose of this study was the detection of buildings in areas with significant forest cover, located in the vicinity of the Stołowe Mountains National Park. The selection of method for detection of buildings in the study had to consider primarily the elimination of vegetation. For this purpose, the data from the airborne laser scanner data and CIR orthophotomap with a resolution of 0.6 m were used. Point cloud data were processed several times to select objects with a minimum height of 2 m. NDVI (Normalized Differenced Vegetation Index) was used for vegetation elimination. The analysis was conducted on two plots, where one area was used as a test set, and the second area - as verification set. Processing of materials was carried out in ArcGIS 10 and a model for buildings detection was developed. Building detection accuracy was about 80%. These results combined with data from the cadastre would help to identify potential sites for land use violations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.