The paper discusses a testing method for a point cloud colorization algorithm. The point cloud colorization process is described in the context of photogrammetric and laser scanning data integration. A parallel algorithm is described following a theoretical introduction to the problem of LiDAR data colorization. The paper consists of two main parts. The first part presents the testing methodology via two aspects: (1) correctness of the color assigned to a given point, (2) testing of interpolation methods. Both tests are used on synthetic and natural data, and the results are discussed. The second part consists of a discussion of correctness factors associated with point cloud colorization as a typical case of process correctness in data integration. Three important factors are discussed in the paper. The first is correctness of the external orientation of the given image. The second is the ratio of the density of the point cloud and the GSD of the image. The third is the relative angle between the image and the scanned plane. All of the results are presented in the paper and the optimal range of the relevant factors is also discussed.
PL
Publikacja omawia opracowanie metody oceny poprawności działania algorytmu służącego do przypisania składowych RGB punktom chmury pochodzącej ze skaningu laserowego. Metoda testowania tego algorytmu jest przedstawiona w kontekście problemu kontroli merytorycznej algorytmów do przetwarzania danych przestrzennych. Proces kolorowania traktowany jest jako jeden z przypadków integracji danych skaningowych i fotogrametrycznych. W ramach wprowadzenia teoretycznego autorzy omawiają problemy badawcze, które wynikają z potrzeby sprawdzenia poprawności oraz dokładności procesu kolorowania. Podane są kryteria, według których można określić, czy badany algorytm jest poprawny pod względem merytorycznym: czy kolorowane są odpowiednie piksele i czy metody interpolacji są zastosowane prawidłowo. Następnie określony jest wpływ dokładności elementów orientacji zewnętrznej oraz rozmiaru piksela terenowego zdjęć na poprawne kolorowanie. Na koniec omówiono problem nierównoległości płaszczyzny tłowej do powierzchni chmury punktów, co też może mieć wpływ na jakość kolorowania. Po rozważaniach teoretycznych opisane zostały metody testowania poprawności przyporządkowania punktom koloru oraz poprawności implementacji algorytmów interpolacji. Obie metody zastosowane są na danych syntetycznych oraz na rzeczywistych danych pomiarowych. Następnie dyskutowane są inne czynniki, niezależne od poprawności algorytmu kolorowania, wpływające na dokładność kolorowania chmury punktów. Pierwszy czynnik to dokładność elementów orientacji zewnętrznej fotogramu, który służy do kolorowania. Kolejnym czynnikiem jest różnica pomiędzy rozdzielczością terenową fotogramu i kolorowanej chmury punktów. Trzecim czynnikiem jest kąt pomiędzy kolorowana powierzchnią chmury punktów a płaszczyzną tłową fotogramu. Badanie algorytmu zostaje rozszerzone o podanie ogólnych zasad dotyczących parametrów technicznych danych integrowanych w ramach omawianego procesu w zakresie powyższych trzech czynników. Badanym, przykładowym algorytmem jest CuScanColorizer - innowacyjny algorytm firmy DEPHOS Software, który wykonuje kolorowanie chmury punktów, wykorzystując do tego metodę przetwarzania równoległego na procesorach graficznych opartą na technologii nVidia CUDA. W podsumowaniu podane są wyniki zastosowania metody kontroli poprawności algorytmu wraz z oceną przykładowego, badanego algorytmu oraz wskazaniem parametrów optymalnych z punktu widzenia stosowania procesu kolorowania chmury. Jako dodatkową konkluzję zawarto ocenę poprawności algorytmu CuScanColorizer.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.