Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kleiszcze smakowite
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Copper oxide nanostructures have garnered significant attention in nanotechnology for their diverse applications. This study presents a green synthesis approach using an aqueous Aegle marmelos leaf extract-based medium to produce copper oxide (Cu4O3) nanoparticles. Optimisation was achieved through a simplified Taguchi L9 orthogonal array, investigating critical parameters such as temperature, surfactants (AOT and Tween 80), and additives (ascorbic acid and chitosan). Under optimised conditions (AOT: 0.0012 mM, ascorbic acid: 10 mM, chitosan: 1 %, temperature: 80 °C), near-spherical nanoparticles of ~200 nm were obtained. Comprehensive characterisation through UV-Vis, DLS, electron microscopy, XRD, and FTIR spectroscopy confirmed the nanoparticles’ properties, while antibacterial assays showed promising results against Escherichia coli bacteria.
EN
In this study, nanoiron and nanoiron+Au particles were synthesised using aqueous Aegle marmelos extract using a facile and one-pot approach. Lower size non-magnetic nanoiron (~34 nm) and nanoiron (~34 nm)+Au particles (1 to 1.5 μm) were produced from the same medium individually. Nanoparticles suspension behaviour and structural characterisations were carried out by UV-Vis spectroscopy, electron microscopy and by X-ray diffraction techniques. Primarily, for synthesis, a simple bioreduction approach generated amorphous nanoiron particles, which on annealing produced magnetic maghemite, γ-Fe2O3 type nanoparticles with sizes 100 to 1000 nm. Posteriorly, the bioreduction process also produces nanoiron+Au particles and can be used for multifunctional applications. As a model application, catalytic application of the as-prepared nanoiron and nanoiron+Au particles towards methylene blue, a thiazine dye degradation is investigated and found to be effective within 20 min. Langmuir-Hinshelwood kinetic model was exploited to know the degradation behaviour, and the model was found to be fit based on R2 values with the observed experimental data. We suggest that the formed highly stable nanoiron particles with in situ stabilisation offer benefits like consistency, environmental friendliness and suits well for large-scale applicability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.