Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  klasyfikacja rytmu serca
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the classification performance of an automatic classifier of the electrocardiogram (ECG) for the detection abnormal beats with new concept of feature extraction stage. Feature sets were based on ECG morphology and RR-intervals. This paper compares two strategies for classification of annotated QRS complexes: based on original ECG morphology features and proposed new approach - based on preprocessed ECG morphology features. The mathematical morphology filtering and wavelet trans-form is used for the preprocessing of ECG signal. Within this framework, the problem of choosing an appropriate structuring element in mathematical morphology filtering in signal processing was studied. Configuration adopted a Kohonen self-organizing maps (SOM) and Support Vector Machine (SVM) for analysis of signal features and clustering. In this study, a classifiers was developed with LVQ and SVM algorithms using the data from the records recommended by ANSI/AAMI EC57 standard. The performance of the algorithm is evaluated on the MIT-BIH Arrhythmia Database following the AAMI recommendations. Using this method the results of identify beats either as normal or arrhythmias was improved.
PL
Artykuł prezentuje nowe podejście do problemu klasyfikacji zapisów ECG w celu detekcji zachowań chorobowych. Podstawą koncepcji fazy ekstrakcji cech jest proces przetwarzania wstępnego sygnału ECG z wykorzystaniem morfologii matematycznej oraz innych transformacji. Morfologia matematyczna bazując na teorii zbiorów, pozwala zmienić charakterystyczne elementy sygnału. Dwie podstawowe operacje: dylatacja i erozja pozwalają na uwydatnienie lub redukcję wielkości i kształtu określonych elementów w danych. Parametry charakterystyki zapisów ECG stanowią bazę dla wektora cech. Do klasyfikacji przebiegów ECG w pracy wykorzystano samoorganizujące się mapy (SOM) Kohonena z klasyfikatorem LVQ oraz algorytm Support Vector Machines (SVM). Eksperymenty przeprowadzono klasyfikując sygnały pomiędzy trzynaście kategorii rekomendowanych przez standard ANSI/AAMI EC57, to jest: prawidłowy rytm serca i 12 arytmii. Zaproponowany w artykule algorytm opiera się na wykorzystaniu elementarnych operacji morfologii matematycznej i ich kombinacji. Ocenę wyników eksperymentów przeprowadzono na sygnałach z bazy MIT/BIH. Na tej podstawie zaproponowano wyjściową architekturę bloku filtrów morfologicznych dla celów ekstrakcji cech oraz unifikacji wejściowego sygnału ECG jako danych wejściowych do budowy wektora cech.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.