Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  klasyfikacja guza mózgu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Optimization driven Deep Convolution Neural Network for brain tumor classification
EN
The classification and segmentation of the tumor is an interesting area that differentiates the tumorous cells and the non-tumorous cells to identify the tumor level. The segmentation from MRI is a challenge because of its varying sizes of images and huge datasets. Different techniques were developed in the literature for brain tumor classification but due to accuracy and ineffective decision making, the existing techniques failed to provide improved classification. This work introduces an optimized deep learning mechanism; named Dolphin-SCA based Deep CNN, to improve the accuracy and to make effective decisions in classification. Initially, the input MRI images are given to the pre-processing and then, subjected to the segmentation process. The segmentation process is carried out using a fuzzy deformable fusion model with Dolphin Echolocation based Sine Cosine Algorithm (Dolphin-SCA). Then, the feature extraction process is performed based on power LDP and statistical features, like mean, variance, and skewness. The extracted features are used in the Deep Convolution Neural Network (Deep CNN) for performing the brain tumor classification with Dolphin-SCA as the training algorithm. The experimentation is performed using the MRI images taken from the BRATS database and SimBRATS, and the proposed technique has shown superior performance with a maximum accuracy of 0.963.
EN
In medical image processing, brain tumor detection and segmentation is a challenging and time-consuming task. Magnetic Resonance Image (MRI) scan analysis is a powerful tool in the recent technology that makes effective detection of the abnormal tissues from the brain. In the brain image, the size of a tumor can be varied for different patients along with the minute details of the tumor. It is a difficult task to diagnose and classify the tumor from numerous images for the radiologists. This paper developed a brain tumor classification using a hybrid deep autoencoder with a Bayesian fuzzy clustering-based segmentation approach. Initially, the pre-processing stage is performed using the non-local mean filter for denoising purposes. Then the BFC (Bayesian fuzzy clustering) approach is utilized for the segmentation of brain tumors. After segmentation, robust features such as, information-theoretic measures, scattering transform (ST) and wavelet packet Tsallis entropy (WPTE) methods are used for the feature extraction process. Finally, a hybrid scheme of the DAE (deep autoencoder) based JOA (Jaya optimization algorithm) with a softmax regression technique is utilized to classify the tumor part for the brain tumor classification process. The proposed scheme is implemented in a MATLAB environment. The simulation results are conducted by the BRATS 2015 database which proved that the proposed approach obtained the high classification accuracy (98.5 %) when compared to other state-of-art methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.