Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kinetics models
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: This research aims to investigate the detailed state of adsorption kinetics modelling and research on the application of hydrogen sulfide adsorption by hydrogel derived from empty fruit bunch (EFB), the determination of the kinetics parameters, and the comparison between models in a selection of the best-fit model. Design/methodology/approach: The kinetics modelling used are pseudo-first-order and pseudo-second-order models. The correlation coefficient was used to evaluate the suitability of the equation R2. After obtaining the results, the comparison was made by comparing the R2 of each model. The pseudo-second-order model has a higher value of correlation coefficient, R2, making it the most suitable kinetics model for adsorption systems. Findings: The R2 for pseudo-first-order on the effect of dry bed height was 0.8814, whereas its effect on powder bed height was 0.9537, and that of the wet bed height was 0.9607. Meanwhile, the R2 for pseudo-second-order on the effect of dry bed height was 0.89, on the effect of the powder bed height was 0.99, and on the effect of the bed height of wet was 0.99, the highest among kinetic models. Based on the results, the pseudo-second-order model best describes the adsorption of hydrogen sulfide (H2S) by hydrogel biochar. Research limitations/implications: The kinetics modelling used are pseudo-first-order, and pseudo-second-order models for hydrogen sulfide adsorption by hydrogel originating from empty fruit bunches (EFB). Practical implications: Based on the results, the pseudo-second-order model best describes the adsorption of hydrogen sulfide (H2S) by hydrogel biochar. Kinetic studies are important in understanding the reactions and design of the process. Originality/value: The authenticity results of this article were found to be 17% similar. The novelty of this paper is the kinetics study of the new adsorbent developed based on EFB to adsorb H2S.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.