Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  katalizator żelazowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Dekarbonizacja metanu z udziałem katalizatorów na bazie żelaza
PL
Zbadano wpływ dwóch prostych, łatwo dostępnych i tanich katalizatorów żelazowych, tlenku żelaza i wiórków stalowych. Dla procesów katalitycznych oraz porównawczo dla procesu termicznego zbadano składy gazów poprocesowych w temp. 600, 750, 850, 950C i 1050°C. W gazach poprocesowych oznaczono zawartość metanu, wodoru, azotu, tlenu i sumy węglowodorów C₂ i C₃ za pomocą GC. Dla poszczególnych procesów wyznaczono konwersję metanu. Węgiel powstający w procesie zobrazowano metodą SEM i EDS i oceniono stopień jego grafityzacji za pomocą spektroskopii Ramana.
EN
MeH was thermally or catalytically pyrolyzed in the presence of Fe₂O₃ or steel shavings at temp. of 600, 750, 850, 950 and 1050°C. In the post-process gases, the content of MeH, H₂, N₂, O₂ and the sum of C₂ and C₃ hydrocarbons were detd. by GC and the conversion of MeH was calculated. The C formed in the process were analyzed and imaged by SEM and EDS. The degree of graphitization of the C was evaluated by Raman spectroscopy.
2
Content available remote Katalizator żelazowy do syntezy amoniaku
PL
Przedstawiono w sposób syntetyczny dorobek badawczy, jaki został zgromadzony w obszarze zagadnień związanych z syntezą amoniaku, w szczególności ten, który dotyczy wytwarzania i struktury katalizatora żelazowego, a także metod oraz warunków jego redukcji i pasywacji.
EN
Fundamentals and a review with 164 refs.
PL
Zastosowanie katalizatora żelazowego do modyfikacji oleju napędowego nie wpływa w sposób istotny na zużycie paliwa w testach spalania. Zauważalny jest jednak korzystny wpływ dodatku katalizatora na obniżenie emisji szkodliwych składników spalin, takich jak CO i CO2. Wpływ ten jest szczególnie widoczny dla większych obciążeń silnika. W przypadku emisji węglowodorów, korzystny wpływ katalizatora widoczny jest dla obciążeń silnika w zakresie 15-30 kW. Zarówno większe, jak i mniejsze obciążenie silnika powoduje wzrost emisji węglowodorów w spalinach w porównaniu z próbami spalania paliwa bez dodatku katalizatora.
EN
Com. gas oil was modified by addn. of a Fe catalyst consisting of a Fe soap and Fe(OH)3 (0.01% by mass) and tested for CO, CO2 and hydrocarbon emissions during combustion in a self-ignition engine (10-30 kW). Addn. of the catalyst resulted in a significant redn. of CO and hydrocarbon contents in the of-gases (at engine load 20–30 kW) and a decrease in the oil consumption.
EN
Several methods of the utilization of spent iron catalyst for ammonia synthesis have been presented. The formation of iron nitrides of different stoichiometry by direct nitriding in ammonia in the range of temperatures between 350°C and 450°C has been shown. The preparation methods of carbon nanotubes and nanofibers where iron catalyst catalyse the decomposition of hydrocarbons have been described. The formation of magnetite embedded in a carbon material by direct oxidation of carburized iron catalyst has been also presented.
8
Content available remote Obecny stan wiedzy o katalizatorze żelazowym do syntezy amoniaku
PL
Na podstawie doniesień literaturowych oraz wyników prac własnych opisano obecny stan wiedzy o katalizatorze żelazowym do syntezy amoniaku. Przedstawiono model powierzchni aktywnej katalizatora żelazowego, w którym założono, że powierzchnia żelaza jest zwilżona tlenkami promotorów oraz, że katalizator w warunkach syntezy amoniaku znajduje się w stanie równowagi. W oparciu o zaproponowany model wyjaśniono mechanizm redukcji oraz dezaktywacji katalizatora.
EN
A review with 78 refs. covering the mechanism of redn. and deactivation of iron catalysts in terms of a catalyst model with the active iron atom surface assumed to be wetted by promoters oxides. Promoters join with the Fe atom via O atom. At >350°C, chem. equil. is rapidly attained in the nanocryst. systems.
PL
Analizowano proces dezaktywacji żelazowych katalizatorów syntezy amoniaku w przemysłowych reaktorach typu TVA. Rozpatrzono kilka różnych modeli dezaktywacji katalizatora wzdłuż wysokości złoża, wykorzystując wyniki badania aktywności próbek katalizatora pobranych w czasie wyładunku starannie spasywowanego wsadu. Modele te zastosowano następnie do oceny pracy reaktora. Za pomocą wybranego modelu oceniono szybkość dezaktywacji katalizatora PS3-INS, na podstawie parametrów technologicznych z okresu jego 12-letniej eksploatacji w reaktorze TVA, w jednostce syntezy amoniaku o zdolności produkcyjnej 500 t/d, w ZA „Puławy”.
EN
In an 8–12 mm PS-3-INS catalyst thoroughly passivated and discharged from the reactor, structural promoters (Al, Ca, Mg, Si) were unaffected, S was present in the top layer, and K losses were 26% in the top and up to 10% in other layers. In mid-layers, Fe crystallite size growth was max. Reactor’s operating lines were calcd. by assuming various catalyst activity variation models, plug flow of the gas through the bed, and the exptl. kinetic characteristics of the catalyst. Most affected were temp. profiles; ammonia production only in 2%. The catalyst activity drop, only 30% in a 12-year-long operation of a 500-t NH3/day plant, was attributed to catalyst’s thermal stability and high purity of the synthesis gas.
10
Content available remote The state of studies on iron catalyst for the ammonia synthesis
EN
The past and present research of the iron catalyst for ammonia synthesis carried out in the Institute of Chemical and Environment Engineering of Szczecin University of Technology has been described. The role of promoters, especially alkali metals, has been explained. The structure of the surface of active iron catalyst has been proposed. The behavior of iron catalyst during the reaction of nitriding has also been shown.
13
EN
The surface area of the iron catalyst for ammonia synthesis impregnated with lithium, sodium, potassium and cesium was examined. The concentration of the respective element (expressed in mole fraction) in the bulk of the catalyst sample was varied from near zero to 1.5-10~3. The increase in the concentration of the promoter led to the decrease of the surface area of the catalyst regardless of the element present in the bulk. The exponential equation has been proposed to describe this dependence. The empirical factor AM o from the mentioned equation, which differs from element to element, was correlated with the difference between the formation enthalpy of A12O3 and the respective alkali metal oxide. The observed dependence obeys a linear law.
14
EN
The decomposition of methane on the doubly- (A1,O,, CaO) and triply- (K,O, A1,O,, CaO) promoted iron catalyst has been investigated using the thermobalance (considered as an differential reactor). The process of decomposition results in the formation of iron carbide and carbon deposit subsequently. The process was carried out under atmospheric pressure in the temperature range of 500 - 600°C. The rate of Fe3C formation in the kinetic region of the reaction was written using the following expression: r = k-pCH . The apparent activation energy of methane decomposition to Fe,C is equal to 158 kJ/mol for both doubly and triply promoted iron catalysts. The pre-exponential factor k() equals to 1.77-10* and 5.71 105 for doubly and triply promoted catalyst, respectively.
EN
The process of irreversible (chemical and thermal) deactivation of fused iron catalyst has been studied. Laboratory simulation of the poisoning process under industrial conditions has been carried out. The process may take place either during manufacture, transport, manipulation and storage (catalyst precursor - oxidised form), or during ammonia synthesis (active catalyst reduced form). In the latter case, the deactivating effect can be observed directly after the introduction of poison, while the same effect for the oxidised catalyst requires a long work period. This difference is because the catalyst in its active form adsorbs the poison from the gas phase directly on its active surface. In the case of the catalyst precursor, the poison may form compounds with promoters, sometimes of exceptional stability (e.g. calcium sulphate), which remain in the intergranular space and decompose only to a minor degree during reduction of the catalyst. As a result, the diffusion of poison to the active surface is very slow. It may thus be concluded that traces of poisons in raw materials used for preparation of the catalyst, or contamination during improper transport or charging of the catalyst, may lead to gradual loss of catalytic activity, albeit at a much slower pace than in the case of poisoning of the active catalyst from the gas phase. The effect of three poisons: sulphur, chlorine and phosphorus, on the activity of the catalyst has been compared. It was found that these non-metals are very strong poisons of the iron catalyst, with even minor quantities causing a marked and irreversible loss of activity. The deactivating effects of sulphur and chlorine are similar, and phosphorus is less potent. The process of poisoning continues with two phases: during the first (low poison concentration) significant loss of catalytic activity occurs with increasing poison concentration; during the second (high poison concentration) increasing poison concentrations have little effect on activity and even at very high concentrations some catalytic activity is still observed. Measurements of catalytic activity of the poisoned catalyst have been interpreted using data from a model system (modified surface of monocrystalline iron sample) under ultra-high vacuum conditions. A method for estimating the number of adsorption sites in defects of the monocrystalline sample based on measurements of segregation kinetics has been developed. A mechanism of permanent deactivation of the iron catalyst for ammonia synthesis has been proposed, explaining chemical deactivation at low poison concentrations by simple blocking of active sites, and at higher poison concentrations by reconstruction of the catalyst surface. In the latter case, segregation of poison atoms from the bulk grains or from the intergranular space to the active surface becomes more prominent. Interactions between poison atoms and oxygen atoms (occupying part of the adsorption sites and responsible for thermal stability of the catalyst), as well as between poison atoms and potassium atoms become increasingly important. leading to reconstruction of the surface and loss of catalytic activity. Deactivation is greater for higher poison concentrations and for more negative Gibbs free energy of poison segregation. Thermal deactivation of the iron catalyst is caused by sintering of iron crystallites and elimination of potassium from the active surface. A method for partial regeneration of the iron catalyst has been proposed, based on the addition of potassium into the catalyst bed. Regeneration may be effected through impregnation of the passivated catalyst in the ammonia synthesis reactor using a solution of potassium hydroxide. Before impregnation it is necessary to remove the most poisoned part of the catalyst bed (near the gas inlet where the majority of poisons is adsorbed) and to sieve the catalyst before recharging, in order to avoid excessive pressure drop on the catalyst bed.
EN
A fast method for the determination of chemical composition of fused iron catalyst for ammonia synthesis was developed. The catalysts with different amount of promoters and with different oxidation state of iron were examined. The chemical composition of catalysts was determined using XRF, XRD, ICP spectroscopy, flame photometry and man-ganometric titration. Calibration curves for CaO, Al(2)O(3) and K(2)O were plotted. Using XRD method the dependence of the relative Fe(200) and Fe(3)O(4)(400) peak intensity ratio on iron oxidation state was plotted. This dependence, however was different for magnetite and for wustite catalysts. Using this method for catalysts containing cobalt the total amount of cobalt and iron with second oxidation state was determined.
PL
Opracowano szybką metodę określania składu chemicznego stopowego katalizatora żelazowego do syntezy amoniaku. Zbadano katalizatory o różnym składzie i stopniu utlenienia. Przy użyciu metod takich jak XRF, XRD, spektroskopia ICP, fotometria płomieniowa i manganometria określono ich skład chemiczny. Wykreślono krzywe kalibracji dla CaO, Al(2)O(3) i K(2)O. Stosując dyfrakcję promieni rentgenowskich wykreślono zależność stosunku intensywności pików Fe(200) i Fe(3)O(4)(400) od stopnia utlenienia żelaza. Stwierdzono, że ta sama zależność nie może być zastosowana jednocześnie dla katalizatorów konwencjonalnych i wustytowych. Stosując tą metodę dla katalizatorów zawierających kobalt określono ilość kobaltu i żelaza na drugim stopniu utlenienia.
17
Content available remote Characterisation on fused iron catalysts by temperature programmed nitriding
EN
Characterisation of fused iron catalysts by temperature programmed nitriding was performed. Experiments were carried out using thermobalance. Various covered iron catalysts were examined. The shape of TPN lines can be explained on the basis of isothermal studies, concerning the studies of catalytic decomposition of NH3. TPN results bring information about the number active sites (diffusion region), total surface area (kinetic region of higher temperatures) and about NH3 catalytic decomposition.
PL
Przy pomocy temperaturowo programowanego azotowania scharakteryzowano stopowe katalizatory żelazowe. Eksperyment wykonano przy pomocy termowagi. Aby wyjaśnić krzywe temperaturowo-programowanej desorpcji przeprowadzono badania izotermiczne a także uwzględniono wyniki badań katalitycznych szybkości rozkładu amoniaku. Przedstawiono modelowy opis reakcji w trzech obszarach: I. Obszarze reakcji limitowanym przez dysocjatywną adsorpcję NH3, II. Obszarze kinetycznym i II. Obszarze dyfuzyjnym. Przebadano różne katalizatory żelazowe. W krzywych temperaturowo-programowanej reakcji zawarte są informacje o ilości miejsc aktywnych na powierzchni próbki (obszar dyfuzyjny), powierzchni całkowitej (obszar wyższych temperatur) i rozkładzie NH3.
18
Content available remote Pasywowany katalizator żelazowy do syntezy amoniaku
PL
Badano adsorpcją azotu, wodoru i amoniaku na katalizatorach żelazowym i żelazowo-kobaltowym do syntezy amoniaku. Pomiary prowadzono w temperaturach typowych dla przemysłowej syntezy amoniaku. W przypadku niskotemperaturowej adsorpcji azotu stwierdzono, że aktywniejszy w syntezie amoniaku katalizator żelazowo-kobaltowy adsorbuje mniejszą ilość tego reagenta. Odwrotny wynik dały pomiary adsorpcji w wyższych temperaturach. Aktywniejszy katalizator adsorbuje w tym przypadku więcej azotu. Na podstawie pomiarów adsorpcji azotu i wodoru zasugerowano, że kobalt powoduje restrukturyzacją powierzchni żelaza w trakcie syntezy amoniaku.
EN
Adsorption of nitrogen, hydrogen and ammonia on the iron and iron-cobalt catalyst for ammonia synthesis has been studied. Adsorption runs have been performed in the temperature range typical for industrial ammonia synthesis. For the case of nitrogen adsorption in the low temperature was lower for iron - cobalt catalyst sample. This sample was more active in ammonia synthesis. Opposite result has been obtained for high temperature adsorption. In this case more active catalyst adsorb more nitrogen. On the bases of nitrogen and hydrogen adsorption data it has been suggested that cobalt caused iron faceting.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.