Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  karboksyhemoglobina
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedstawiono wyniki badań dotyczących ograniczenia procesu rozkładu barwników hemowych, występujących w mięsie, w wyniku powierzchniowego zastosowania octanu L-(+)-α-tokoferolu i karboksyhemoglobiny jako składników biokompozytowych filmów ochronnych. Jako czynniki zmienności przyjęto dodatek antyoksydantu, formy karboksy barwnika hemowego oraz czas przechowywania próbek mięsa w warunkach chłodniczych (15 dni). Stabilność barwników weryfikowano na podstawie pomiaru fizycznych wyróżników barwy (CIE L*a*b*), oznaczenia ogólnej zawartości barwników hemowych, stężenia oksymioglobiny (OxyMb), karboksymioglobiny (COMb), deoksymioglobiny (DeoMb), metmioglobiny (MetMb), pH oraz grubości powierzchniowej warstwy, w której obserwowano konwersję barwników hemowych do form karboksy. Wykazano przeciwutleniające działanie octanu L-(+)-α-tokoferolu wobec form deoksy i oksymioglobiny. Wprowadzenie karboksyhemoglobiny, jako składnika biokompozytu, warunkowało konwersję części form mioglobiny w karboksy barwnik. Jednoczesne zastosowanie antyoksydantu i karboksyhemoglobiny w filmach ochronnych zwiększyło dynamikę wnikania składników emulsji w głąb doświadczalnych próbek mięsa.
EN
L-(+)-α-Tocopherol acetate and carboxyhaemoglobin were added to exptl. meat samples as biocomposite emulsion films to limit the deterioration of haem pigments during the meat storage for 15 days. Antioxidant activity of L-(+)-α-tocopherol to oxy and deoxy forms of myoglobin was obsd. Myoglobin formed carboxy dyes when carboxyhemoglobin was used in exptl. emulsions. The depth penetration of emulsion was increase after addn. of dl-αtocopherol acetate and carboxyhemoglobin.
2
Content available Tlenek węgla
PL
Tlenek węgla (CO) jest palnym, bezbarwnym gazem bez zapachu. W warunkach przemysłowych tlenek węgla, będąc składnikiem gazu wodnego i gazu wielkopiecowego, powstaje przez spalanie węgla w warunkach utrudnionego dostępu tlenu. W środowisku bytowania występuje powszechnie w wyniku spalania substancji zawierających węgiel. Źródłem tlenku węgla w powietrzu są procesy spalania w silnikach spalinowych, piecach oraz palenie tytoniu. Narażenie zawodowe na tlenek węgla jest związane z procesami spalania. Do grup dużego ryzyka należą: pracownicy stacji obsługi samochodów, policjanci kierujący ruchem pojazdów oraz pracownicy tuneli i strażacy. Tlenek węgla powoduje zatrucie jedynie przez drogi oddechowe. Jego działanie polega na doprowadzeniu do anoksji tkankowej przez blokowanie transportu tlenu w drodze konkurencyjnego wiązania z hemoglobiną. Wiązanie tlenku węgla z hemoglobiną powoduje powstanie karboksyhemoglobiny (COHb). Powinowactwo tlenku węgla do hemoglobiny, ferrohematyny i mioglobiny jest 200 ÷ 300 razy większe od powinowactwa tlenu. Około 80 ÷ 90% wchłoniętego tlenku węgla ulega odwracalnemu wiązaniu z hemoglobiną. Około 15% tlenku węgla znajduje się poza układem krążenia, głównie w sercu i w mięśniach w formie połączenia z mioglobiną. Tlenek węgla ulega wydalaniu przez płuca w formie niezmienionej. W trakcie narażenia na tlenek węgla o stałym stężeniu szybko wzrasta stężenie karboksyhemoglobiny na początku narażenia, osiągając stan równowagi po około 5 h. Wzrost stężenia karboksyhemoglobiny podczas narażenia na tlenek węgla opisuje równanie Coburna-Fostera-Kane (równanie CFK) opracowane przy uwzględnieniu takich znanych zmiennych fizjologicznych, jak: wytwarzanie endogennego tlenku węgla, dyfuzja w płucach, wentylacja pęcherzykowa, objętość krwi, ciśnienie atmosferyczne, ciśnienie parcjalne tlenku węgla i tlenu w płucach. Biologiczny okres półtrwania karboksyhemoglobiny wynosi średnio 320 min (128 ÷ 409 min) i nie jest zależny od czasu trwania narażenia, liczby narażeń i stężenia tlenku węgla we wdychanym powietrzu. Wiązanie tlenku węgla z hemoglobiną zmniejsza możliwość transportu tlenu do narządów i tkanek oraz wywołuje zaburzenia procesów oksydacyjnych wewnątrz komórki, co powoduje niedotlenienie tkanek w stopniu proporcjonalnym do stopnia wysycenia krwi karboksyhemoglobiny oraz zapotrzebowania danej tkanki na tlen. Skutki działania tlenku węgla są najbardziej nasilone w takich silnie ukrwionych tkankach i narządach, jak: mózg, układ sercowo-naczyniowy, mięśnie oraz płód. Istnieje zależność między wielkością stężenia karboksyhemoglobiny we krwi i występowaniem skutków działania tlenku węgla. Dane dotyczące występowania wczesnych skutków działania tlenku węgla na układ sercowo-naczyniowy i ośrodkowy układ nerwowy u ludzi wskazują, że mogą się one pojawiać, gdy stężenia karboksyhemoglobiny są większe niż 5%. Wydaje się, że utrzymywanie na poziomie poniżej 3,5% stężeń karboksyhemoglobiny u niepalących ludzi narażonych w ciągu 8 h może zapobiegać wystąpieniu szkodliwych skutków działania tlenkuwęgla. Dotyczy to szczególnie osób z chorobami układu sercowo-naczyniowego oraz narażenia w niekorzystnych warunkach (wysoka temperatura, hałas czy duże obciążenie wysiłkiem). Stężeniu 3,5% karboksyhemoglobiny odpowiada, zgodnie z równaniem Coburna-Fostera-Cane, narażenie na tlenek węgla o stężeniu około 30 mg/m3 w ciągu 8 h. Przyjęto więc wartość najwyższego dopuszczalnego stężenia (NDS) tlenku węgla równą 23 mg/m3 (20 ppm), co odpowiada wartości NDS zaproponowanej przez Komitet Naukowy (SCOEL) w Unii Europejskiej. Wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) tlenku węgla powinna zapobiegać nadmiernemu przekraczaniu stężenia karboksyhemoglobiny 3,5% w okresach 15-minutowego narażenia. Według SCOEL wartość ta wynosi 117 mg/m3 (100 ppm). Zgodnie z danymi ACGIH, osiągnięcie stężenia karboksyhemoglobiny równego 3,5 mg/m3 przy tym stężeniu tlenku węgla w powietrzu wymaga 39 min podczas umiarkowanego obciążenia pracą. Można oczekiwać, że w ciągu 15 min stężenie karboksyhemoglobiny może wzrosnąć w tych warunkach o około 1,5% do łącznej wartości około 5%. Nie powinno to stanowić zagrożenia dla osób zdrowych. Prawidłowy poziom karboksyhemoglobiny związany z procesami fizjologicznymi wynosi u osób zdrowych 0,4 ÷ 0,7%. U osób palących papierosy stężenia karboksyhemoglobiny mogą dochodzić do 10%. Biorąc po uwagę możliwe skutki działania tlenku węgla, szczególnie u osób z chorobą niedokrwienną serca i u osób wykonujących prace wymagające szczególnej koncentracji, wartość dopuszczalnego stężenia w materiale biologicznym (DSB) powinna wynosić 3,5% karboksyhemoglobiny. Wartość ta dotyczy wyłącznie osób niepalących.
EN
Carbon monoxide (CO) is a colourless, odourless, flammable gas. Anthropogenic emissions of carbon monoxide originate mainly from incomplete combustion. The largest proportion of these emissions are produced as exhaust of internal combustion engines. Other sources include power plants using coal and waste incinerators. Indoor concentrations are associated with combustion sources and are found in enclosed parking garages, service stations and restaurants. Passive smoking is associated with increasing a non-smoker’s exposure. Occupational groups include auto mechanics, garage and gas station attendants, police, firefighters. Industrial processes which can expose workers to carbon monoxide include steel production, coke ovens and petroleum refining. Carbon monoxide is absorbed through lungs. Approximately 80-90% of the absorbed carbon monoxide binds with haemoglobin producing carboxyheamoglobin ( CO-Hb). CO-Hb levels likely to result from external carbon monoxide exposure can be estimated reasonably well from the Coburn-Foster-Kane (CFK) equation. Decrease of the oxygen carrying capacity of blood appears to be the principal mechanism of action of carbon monoxide. Its toxic effects on humans are due to hypoxia in organs and tissues with high oxygen consumption such as the brain , the hearth , exercising skeletal muscle and the developing fetus. In apparently healthy persons decreased oxygen uptake and the resultant work capacity under maximal exercise conditions have been shown starting at 5 % CO-Hb. Hypoxia due to acute carbon monoxide poisoning may cause both reversible and long lasting neurological effects. Psychomotor effects, such as reduced coordination, tracking and driving ability have been revealed at CO-Hb levels as low as 5,1 – 8,2 %. Therefore it seems that to protect the nonsmoking, healthy workers a Co-Hb level of 3,5 % should not be exceeded. According to the Coburg-Foster-Kane equation 3,5% CO-Hb corresponds to the 8 h exposure to carbon monoxide concentration in the air of 30 mg/m3. At the proposed Occupational Exposure Limits ( TWA and STEL) of 23 mg CO/m3 ( 8 hours) and 117 mg CO/m3 (15 min) the CO-Hb levels of 3,5 % and 5 % respectively should not be exceeded. The Biological Exposure Index ( BEI) of 3,5 % CO-Hb was also proposed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.