Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kalendarz upraw
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Climate change is a challenging global issue for the sustainable production of various crops around the world as change in climatic patterns can create a stressful environment for plant growth. This study assesses the impact of climate change on future water demand and sugarcane yield in Pakistan for the baseline (1981–2005) and future timescales (2020s, 2050s and 2080s). For evaluating the crop water requirement and yield under future climate, CROPWAT 8.0 and AquaCrop models were used, respectively. For the estimation of future climate, three diferent Regional Climatic Models were applied under two projection scenarios i.e. RCP 4.5 and RCP 8.5. Maximum temperature, precipitation and minimum temperature displayed an increasing trend under the projected future climatic conditions. The results revealed a growth in the crop water requirement with a subsequent escalating irrigation demand caused due to rise in projected temperature; this is because the projected increase in precipitation under forecasted weather conditions cannot compensate for the increased evaporative demand. Moreover, the results showed a general increasing trend of sugarcane yield under projected climate. By delaying the crop calendar, an overall decrease in crop water requirement in the range of 10.7–12.6% and increase in the yield in the range of 0.37–6.48 tha−1 can be observed under both climate change scenarios. Moreover, 90% of control irrigation level proved benefcial in terms of saving around 10% irrigation water with acceptable yield reduction. The outcomes of the study are supportive for growers to gain more yield using less amount of water and to adapt to changing climate. The results are also helpful for policy makers to develop adaptation strategies to improve sugarcane productivity and to address water stress in Pakistan.
EN
Long Xuyen Quadrangle is one of the important agricultural areas of the Mekong Delta of Vietnam accounting for 25% of rice production. In recent years, the area faces drought and salinization problems, as part of climate change impact and sea level rise. These are the main causes that led to the crop water deficits for agricultural production. Therefore, this work was conducted to predict crop water requirement (CWR) based on consideration of other related meteorological factors and further redefine the crop planting calendar (CPC) for three main cropping seasons including winter–spring (WS), summer–autumn (SA) and autumn–spring (AS) using the Cropwat crop model based on the current climate conditions and future climate change scenarios. Meteorological data for the baseline period (2006–2016) and future corresponding to timescales 2020s, 2055s and 2090s of Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios are used to predict CWR and CPC for the study area. The results showed that WS and SA crops needed more irrigation water than AS crop and the highest irrigation water requirement of the WS and SA crops occurred on developmental stage, while the AW crop appeared on growth, developmental and late stage for the baseline and timescales of RCP4.5 and RCP8.5 scenarios. Calculation results of the shift of CPC indicated that the CWR of the AW crop decreased lowest approximately 6.6–20.6% for timescales of RCP4.5 scenario and 20.6–25.5% for RCP8.5 scenario compared with the baseline.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.