Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kąt rozpylenia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the following article there has been assessed the influence of the spray angle on sprinkling intensity distribution in the spray water stream generated by the selected fire-hose nozzle PWT 52/1-2-3-4 type TURBOMASTER produced by AWG company. The research was performed in the open air in August and September 2017. The field of measurements was located in front of the gate of The Firefighting and rescue equipment laboratory. A slightly modified test stand, which is normally used for researching fire-hose nozzles, was used to carry out the experiments. The measurements of the sprinkling intensity were performed on the basis of the authorial improved test methodology patterned upon the guidelines included in the old Polish PN-89/M-51028 standard. The parameter of sprinkling intensity has been assessed in weight and volumetric way using the measuring containers. The digital angle measuring device was used to measure the spray angle. The following article presents only the results of research, which was carried out for two water flow rates 200 dm3 /min and 400 dm3 /min and three spray angles: 30°, 60° and 90°, but all experiments were performed for two different water flow rates (200 dm3 /min and 400 dm3 /min) and six spray angles (15°, 30°, 45°, 60°, 75° and 90°). Based on the results of the conducted research it has been clearly demonstrated that the spray angle is a very important parameter which has an influence on sprinkling intensity distribution in the spray water streams produced by the selected fire-hose nozzles. It was observed that along with the changes of the spray angle the values of many parameters, which describe sprinkling intensity distribution, have been changed. The following parameters have been adopted for this research: the value of the sprinkling area and its dimensions (shape), the maximum throw (range) of the produced spray streams and the maximum value of the sprinkling intensity. In the last part of this article a summary and some conclusions have been made, of both, academic significance and practical character. In addition, the necessity and validity of the subsequent research has been indicated, in particular, using modern fire-hose nozzles.
PL
W artykule dokonano oceny wpływu kąta rozpylenia na rozkład intensywności zraszania w strumieniu rozpylonym, wytwarzanym przez wybraną prądownicę wodną PWT 52/1-2-3-4 typ TURBOMASTER, produkowaną przez firmę AWG. Badania wykonano na otwartej przestrzeni w okresie sierpnia i września 2017 r. Stanowisko badawcze zlokalizowano na placu przed bramą Pracowni Sprzętu Ratowniczo-Gaśniczego. Do przeprowadzenia doświadczeń wykorzystano częściowo zmodyfikowane stanowisko laboratoryjne, służące nominalnie do badania prądownic wodnych. Pomiarów intensywności zraszania dokonano wykorzystując autorsko udoskonaloną metodę badawczą pochodzącą ze starej polskiej normy PN-89/M-51028. Parametr ten określano w sposób wagowo-objętościowy z użyciem pojemników pomiarowych. Do pomiaru kąta rozpylenia wykorzystano kątomierz elektroniczny. W niniejszym artykule przedstawiono jedynie wyniki badań wykonanych dla wydajności 200 dm3 /min i 400 dm3 /min oraz trzech kątów rozpylenia: 30°, 60° i 90°, choć całość pomiarów została przeprowadzona dla sześciu różnych kątów rozpylenia (15°, 30°, 45°, 60°, 75° i 90°). Otrzymane rezultaty wskazują jednoznacznie, że kąt rozpylenia jest bardzo ważnym parametrem mającym wpływ na rozkład intensywności zraszania w strumieniach rozpylonych wytwarzanych przez prądownice wodne typu Turbo. Zaobserwowano bowiem, że wraz ze zmianą kąta rozpylenia, zmianie ulegają wartości wielu parametrów, opisujących rozkład intensywności zraszania. Do przeprowadzenia analizy przyjęto następujące wskaźniki: powierzchnię zraszania i jej wymiary (kształt), maksymalną długość rzutu prądu rozproszonego oraz maksymalną intensywności zraszania. Na koniec sformułowano wnioski istotne zarówno w aspekcie teoretycznym, jak i praktycznym. Ponadto wskazano konieczność i zasadność prowadzenia dalszych prac badawczych, zwłaszcza z użyciem nowoczesnych prądownic wodnych.
PL
Rozpylone ciecze stosuje się w wielu gałęziach gospodarki. Mgłę wodną wykorzystuje się między innymi w ochronie przeciwpożarowej w aktywnych systemach zabezpieczeń oraz do absorpcji substancji niebezpiecznych. W zależności od przeznaczenia, producenci dysz rozpylających dążą do uzyskania odpowiedniej makrostruktury i mikrostruktury rozproszonej cieczy. Parametry zewnętrzne strumienia cieczy, takie jak kąt rozpylenia i gęstość zroszenia określają równomierność rozkładu cieczy w strudze kropel i zależą od typu dyszy rozpylającej oraz parametrów przepływu cieczy. W artykule przedstawiono wyniki badań określające wpływ ciśnienia zasilania na rozkład cieczy w strudze kropel i kąt rozproszenia. W badaniach wykorzystano dyszę wirową spiralną TF -6, dla której wyznaczono charakterystykę przepływową p = f(Q). Badania przeprowadzono w sześciennej komorze o wymiarach 1200 mm. Pomiary kąta rozproszenia i gęstości zroszenia dokonano przy ciśnieniu zasilania: 2 bary, 4 bary i 6 barów. Rozkład cieczy w strudze kropel określono dla dwóch odległości od wylotu dyszy: 600 mm i 1000 mm. Przeprowadzone badania wskazują, że ciśnienie zasilania jest istotnym parametrem wpływającym na rozkład cieczy i zasięg strugi kropel. Dla badanej dyszy spiralnej o współczynniku przepływu K = 3,082 [dm3/min·bar0,5] największy kąt rozpylenia wynoszący 610 uzyskano przy ciśnieniu p = 6 bar. Wraz ze wzrostem ciśnienia zasilania i odległości od wylotu dyszy pole powierzchni zraszania ulegało zwiększeniu. Uzyskane rozkłady gęstości zroszenia wskazują, że badana dysza tworzy strugę w kształcie stożka o nierównomiernym rozkładzie kropel. Wraz ze wzrostem ciśnienia zasilania odnotowano większe różnice między średnią wartością gęstości zroszenia a wartością maksymalną.
EN
Sprays are widely used in many industries. A water mist is used for instance in active fire protection systems and to absorb hazardous substances. Manufacturers of spraying nozzles try to obtain appropriate macro- and microstructure of a spray, which depends on specific nozzle applications. External parameters of sprays, such as a dispersion angle or a sprinkling density specify, whether the liquid in a stream is equally distributed. These parameters depend also on a spray nozzle type and the flow parameters. In this paper ,the authors show the impact of supply pressure on the distribution of the liquid and the spray angle. In this study the spiral vortex nozzle type TF-6 was used. For this nozzle, flow characteristics p = f(Q) was established The study was conducted in a cubic chamber. The size of the chamber was 1200 mm. Both, the dispersion angle and the sprinkling density were measured using the supply pressure of 2, 4 and 6 bars. The distribution of the liquid stream was observed for two distances measured from the nozzle head, which were equal to 600 mm and 1000 mm. Conducted studies show that the supply pressure has a strong impact on the liquid distribution and the droplet stream range. For the spiral vortex nozzle with flow parameter of K = 3,082 [dm3/min·bar0,5] the largest spray angle of 61 degrees was observed at the pressure p = 6 bars. Increase in both supply pressure and the distance from the nozzle head widen the spraying area. Obtained distribution of the spraying density indicates that the nozzle creates the cone-shaped stream with an uneven distribution of the droplets. Increase in the supply pressure leads to the larger differences between the average spray density and the maximum value.
3
Content available Analiza kąta rozpylenia dla rozpylaczy wirowych
PL
W pracy przeanalizowano doświadczalnie wpływ konstrukcji rozpylacza wirowego oraz kształtu otworu wylotowego na wartość kąta rozpylenia. Analiza procesu rozpylania wykazała, że dla rozpylacza z jednym króćcem wlotowym kąt rozpylenia jest większy niż dla rozpylacza z dwoma króćcami wlotowymi. Zależność kąta rozpylenia od prędkości przepływu jest nieliniowa. Kąt rozpylania rośnie ze wzrostem prędkości przepływu cieczy.
EN
Effect of construction and outlet shape of the pressure-swirl atomizer on the spray angle value was experimentally analyzed in the paper. Atomization process analysis proved that the spray angle is larger for the atomizer with one liquid inlet in comparison with the atomizer with two inlets. A relationship between the spray angle and flow rate is of non-linear character. The spray angle increases with the increase of liquid flow rate.
PL
W pracy przedstawiono wyniki badań doświadczalnych kąta rozpylenia dla rozpylaczy pęcherzykowych wykorzystujących ruch wirowy. Dla przepływu jednofazowego wartość kąta rozpylenia wzrastała wraz ze wzrostem wartości masowego strumienia cieczy. Dla przepływu dwufazowego wartość kąta rozpylenia wzrastała wraz ze wzrostem wartości masowych strumieni gazu i cieczy. Ponadto zaproponowano równanie korelacyjne opisujące kąt rozpylenia w zależności od masowych strumieni gazu i cieczy.
EN
The paper presents experimental results of spray angle for effervescent atomizers using a swirl motion. For one-phase flow the spray angle increases with the increase of liquid mass flow rate. For two-phase flow a value of spray angle increases with the increase of mass flow rates of gas and liquid. Additionally, a correlation of spray angle as a function of gas and liquid mass flow rates is proposed.
PL
Precyzyjny dobór rozpylaczy do zabiegów ochrony roślin wymaga znajomości parametrów charakteryzujących strumień cieczy. Celem pracy było wyjaśnienie wpływu ciśnienia cieczy i konstrukcji rozpylacza na wartość kąta rozpylenia. W pracy przedstawiono wyniki badań laboratoryjnych kąta rozpylenia cieczy dla wybranych rozpylaczy płaskostrumieniowych. Odnotowano istotny wpływ ciśnienia cieczy i konstrukcji rozpylacza na wartość kąta rozpylenia. Niezależnie od konstrukcji rozpylacza wzrost ciśnienia cieczy powodował zwiększenie kąta rozpylania. Jednak obserwowano jego mniejszą zmianę dla rozpylaczy inżektorowych.
EN
Accurate selection of atomizers for plant protection treatment requires knowledge of parameters, which characterise liquid stream. The purpose of the work was to explain the effect of liquid pressure and sprayer design on spraying angle. The paper presents laboratory test results for liquid spraying angle for selected fan atomizers. The researchers reported significant impact of liquid pressure and atomizer design on spraying angle value. Regardless of atomizer design, liquid pressure buildup resulted in increased spraying angle. However, its change was smaller for injector atomizers.
PL
Omówiono konstrukcję rozpylaczy strumieniowo-wirowych, scharakteryzowano parametry strugi rozpylonej cieczy oraz przedstawiono sposób wyznaczania współczynnika wypływu i kąta rozpylenia tego typu rozpylacza dla cieczy nielepkiej przy założeniu hiperbolicznego rozkładu prędkości obwodowej w jego kanale wylotowym. Obliczanie wszelkich rozpylaczy sprowadza się bowiem głównie do analitycznego wyznaczenia tych dwóch wielkości. Wpływ lepkości uwzględniono, wprowadzając zredukowane straty ciśnienia w rozpylaczu.
EN
A structure of jet-swirl atomizers has been shown, parameters of the atomized liquid jet have been characterized and a way of determination of the discharge coefficient and the spray angle of this type of atomizers have been presented for in viscid liquid on the assumption of the hyperbolic distribution of the peripheral velocity in the atomizer discharge orifice. The method of calculation of all atomizers generally consists in analytical determination of these two quantities. An influence of viscosity has been taken into account by introducing reduced pressure losses in the atomizer.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.