Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  izotopy węgla
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Herein are presented the results of detailed bio - (calcareous dinocysts, calpionellids, foraminifers, saccocomids) and chemostratigraphic (δ13C) studies combined with high-resolution microfacies, rock magnetic and gamma-ray spectrometry (GRS) investigations performed on the upper Kimmeridgian-upper Valanginian carbonates of the Giewont succession (Tatricum, Giewont and Mały Giewont sections, Western Tatra Mountains, Poland). The interval studied covers the contact between the Raptawicka Turnia Limestone (RTL) Fm. and the Wysoka Turnia Limestone (WTL) Fm. Their sedimentary sequence is composed of micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone and encrinites. A precise correlation with the previously published Mały Giewont section is ensured by biostratigraphy, rock magnetic and GRS logs. The methodology adopted has enabled the recognition of two stratigraphic discontinuities, approximated here as corresponding to the latest Tithonian-early (late?) Berriasian and the early Valanginian. The hiatuses are evidenced by biostratigraphic data and the microfacies succession as well as by perturbations in isotopic compositions and rock magnetic logs; they are thought to result from a conjunction of tectonic activity and eustatic changes. A modified lithostratigraphic scheme for the Giewont and the Osobita High-Tatric successions is proposed. The top of the RTL Fm. falls in the upper Tithonian, where cyanoid packstones disappear. At the base of the WTL Fm. a new Giewont Member is defined as consisting of a basal lithoclastic packstone and following encrinites.
EN
The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian-Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio-eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian-Turonian Anoxic Event (CTAE).
EN
The Santa Lucía Formation represents the major phase in Devonian reef development of the Cantabrian Zone (Cantabrian Mountains, northwest Spain). In the present study the transition from the carbonate platform deposits of the Santa Lucía Formation to the overlying euxinic basinal deposits of the Huergas Formation is described. These transitional strata are connected to the Basal Choteč Event and represent a condensed sedimentation of micritic dark-grey and black limestones with an upward increase of dark shale intercalations with iron mineralisation surfaces and storm-induced brachiopod coquinas. The transitional beds are grouped into a new unit, the Cabornera Bed, which consists of lime-stone, limestone-shale and shale facies associations, representing a sediment-starved euxinic offshore area just below the storm wave base. Four stages in reef decline can be recognised: a reef stage, an oxygen-depleted, nutrient-rich stage, a siliciclastic-influx stage and a pelagic-siliciclastic stage. Additional geochemical and geophysical investigations are needed to verify the results presented herein.
EN
This study focuses on the inter- and intra-specific variability in δ13C and δ18O values of shells and opercula of gastropods sampled live from the littoral zone of Lake Lednica, western Poland. The δ13C and δ18O values were measured in individual opercula of Bithynia tentaculata and in shells of Bithynia tentaculata, Gyraulus albus, Gyraulus crista, Lymnaea sp., Physa fontinalis, Radix auricularia, Theodoxus fluviatilis and Valvata cristata. The gastropods selected for the study are among the species most commonly found in European Quaternary lacustrine sediments. The carbon isotope composition of the gastropod shells was species-specific and the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Differences in shell δ13C values between species were similar at all sampling sites, thus the factors influencing shell isotopic composition were interpreted as species-specific. The δ18O values of shells were similar in all the species investigated. Significant intra-specific variability in shell δ13C and δ18O values was observed not only within the populations of Lake Lednica, which can be explained by heterogeneity of δ13C DIC, δ18O water and water temperature between the sites where macrophytes with snails attached were sampled, but also between individuals sampled from restricted areas of the lake’s bottom. The latter points to the importance of factors related to the ontogeny of individual gastropods.
EN
Ammonite distribution patterns and carbon and oxygen stable isotopes from the Lipnik-Kije (Poland) and Dubovcy (Ukraine) sections allow us to propose a model of sea water paleo-circulation in central Europe for the Coniacian-Santonian interval. The tectonic evolution of the south-eastern part of Poland, and expansion of the Krukienic Island areas, appears to have been one of the most important factors affecting paleotemperatures and the distribution of ammonite faunas in the shallow, epicontinental sea in this part of Europe. In the Lipnik-Kije section, low-latitude Tethyan ammonites, especially of the genera Nowakites, Parapuzosia and Saghalinites, are mixed with the cold water loving ammonite genus Kitchinites in the Lower Santonian. In the Dubovcy section (western Ukraine), Tethyan ammonites disappear abruptly in the earliest Santonian, giving place to temperate ammonites of the Kitchinites group in the early Early Santonian and to Boreal belemnites of the genus Gonioteuthis in the Middle and Late Santonian. Despite evidence for the effects of diagenesis in both sections, bulk-rock δ18O records from the limestones support higher seawater paleotemperatures in the Polish sea and cooler conditions in the western Ukraine. The proposed paleo-circulation model and paleotemperature distribution across Europe is supported independently by changes in faunal and nannoflora evidence (ammonites, foraminifera and nannoplankton), and rather unexpectedly with the bulk δ18O data. These data allow the recognition of the end-Coniacian–Early Santonian cooling event, resulting from cold currents flowing from the north, which is traceable, with different magnitude, in several European sections. Facies changes in both sections are related to the input of terrigenous material, and linked to Subhercynian tectonic movements which affected the eastern (Ukrainian) and central (Holy Cross) segment of the Mid Polish Trough at different times. Uplift and sediment input moved westwards through time. Clastic input is detectable at the Coniacian–Santonian boundary in the Ukrainian segment. Similar facies changes reached the Holy Cross segment in Poland distinctly later, somewhen in the Middle Santonian. It is likely that tectonics together with paleo-circulation changes markedly restricted or even cut-off the western Ukraine area from Tethyan ocean influences in the Early Santonian.
PL
W celu zwiększenia efektywności wydobycia, w kopalniach gazu ziemnego stosuje się technologię wzmożonego pozyskania gazu (EGR), która bazuje na zatłaczaniu CO2 do złoża. Podczas takiego procesu należy spodziewać się efektów izotopowych. Badania objęły analizę składu trwałych izotopów węgla i wodoru w metanie ze złoża, w którym technologia EGR jest stosowana. Badania składu trwałych izotopów prowadzono od września 2009 r. Stwierdzona, zarówno przestrzenna, jak i czasowa zmienność tego składu pozwala stwierdzić, że cały układ jest bardzo dynamiczny. Wyraźnie da się zauważyć, że występują preferencyjne kierunki transportu metanu w złożu, co wpływa na efekty izotopowe, a front najwyższej prędkości migracji metanu jest znaczony przez najniższe stosunki składu trwałych izotopów węgla i wodoru z metanu.
EN
In order to increase recovery of gas and oil from deposits some technologies, called Enhanced Gas Recovery, with injection of C02 are used. In this process isotopic effects are expected. Therefore we have analyzed isotopic composition of carbon and hydrogen in methane in one EGR object. Carbon and hydrogen stable isotopic observations of methane from the EGR object have been carried out since September 2009. Both spatial and temporal variations in carbon and hydrogen isotopic ratios in methane show that the system is very dynamie. It has been observed clearly that there are some preferential paths of methane transportation through the deposit, what resulted in isotopic effects. Namely, the carbon and hydrogen isotopic ratios show that the front of the highest velocity of methane movement is marked by the lowest isotopic ratios.
EN
The delta exp.13C curve is presented for the Devonian-Carboniferous boundary (from the expansa to sandbergi conodont zones) outcropped at Kowala in the western Holy Cross Mountains, Poland. A positive carbon excursion is reported within micritic limestones corresponding to the upper (or even uppermost middle) praesulcata conodont zone, which coincides with the glacio-eustatic sea-level drop. The positive shift in the carbon isotope signature was preceded by a mass extinction of the ostracode, conodont and ammonite fauna coeval with the Hangenberg Event.
EN
The paper presents interpretation of total organic carbon (TOC) content and carbon isotopic composition of organic matter within the Miocene/Pliocene Poznań Formation deposits recorded in BK 110 borehole in the Konin area (Central Poland). The TOC content as well as a :13C(TOC) PDB values vary widely throughout the deposits, from 0.1% to 6.1% (0.6% at average) and from –14.2‰ to –26.2‰ (–23.2‰ at average), respectively. The distribution of these parameters within the series allow to distinguish the lower part, which is thinner and enriched in organic matter accumulation, and the upper part, which is thicker and clastic. The a:13CTOC values indicate that C3 plant material prevailed in the lower part, while the upper part contains of C3+C4 plant material or C3 + marine organic matter. The subdivision of the Formation into lower and upper parts reflects a shift from peat-bog vegetation in nearshore lake into brackish lagoon environment with a periodical supply of terrigenous land material. The shift in the origin of the organic matter and sedimentological features of the Poznań Formation sediments imply a tectonic event or/and climatic shift, possibly connected with evolution of plants population and thus relative decrease in C3 and increase in C4 organic material at the Miocene– Pliocene boundary.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.