The Hard C-Means (HCM) clustering method is one of the most popular clustering methods based on minimization of a criterion function. However, one of the greates disadvantage of this method is that the performance of the HCM is good only when the data set contains clusters that have approximately the same size and shape. The paper is devoted to a new clustering algorithm, called minimum hypervolume clustering (MHC), that seeks C hyperellipsoids with the smallest hypervolumes that enclose all the data points. Performances of the new clustering algorithm are experimentally verified using synthetic and real life data containing clusters with different size and orientations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.