Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ion-exchange
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The successful acid mine drainage (AMD) treatment needs site-specific installation and implementation, as well as the deployment of technology that is compatible with the pollutants contained in the AMD. If key by-products of the AMD can be recovered, the financial sustainability of the AMD remediation method may be greatly improved. Additional research into novel and innovative solutions is necessary to advance in this direction. To accomplish this, it is necessary to have a complete awareness of current remediation technologies that are available and accessible. Active physical treatment methods such as ion exchange, adsorption, electrochemistry, and membrane techniques were examined in this article. Membrane technology excels in terms of ease of use, versatility, and environmental effect but produces brine streams the management of which remains vital for future adoption of the technology. Liquid membranes (LM), Micellar Enhanced Ultra-Filtration (MEUF), and Polyelectrolyte Enhanced Ultra-Filtration (PEUF) are all innovative membrane technologies that may provide some possibilities for metal recovery from chemical sludge and/or brine streams. Electrochemical technologies are considered an attractive alternative for AMD treatment, because they require only electricity as a consumable and can treat AMD to high standards by removing metals via (co)precipitation and sulfate via ionic migration (when an anion-exchange membrane is used in the configuration), while producing significantly less sludge. However, the accepted shortcomings include membrane/electrode fouling produced by (co)precipitates on the active surfaces necessary for the process, a lack of understanding regarding the effective scaling up to industrial scale, and the relatively expensive capital expenditure (CAPEX) required. The removal of heavy metals from AMD effluents by adsorption has a number of technical and environmental benefits, including high efficiency, and environmental friendliness. Despite its benefits, this technique has certain hurdles, such as the production process for low-cost adsorbents.
EN
Landfilling and stockpiling unrecycled colored container glass represents a considerable failure in sustainability with respect to the conservation of energy and mineral resources. In this study, the single-step hydrothermal synthesis of low-silica zeolites from a mixture of waste green container glass and aluminum foil (Al:Si = 1) in 4 M NaOH(aq) at 125 °C was followed at 1, 3, 7 and 14 days. The principal phases, sodalite and cancrinite, appeared within 1 day accompanied by minor quantities of hydrogarnet and tobermorite arising from a stoichiometric excess of calcium ions in the parent glass. Products of 63, 67, 71 and 72% crystallinity were obtained at 1, 3, 7 and 14 days, respectively, with partial successive conversion of sodalite to cancrinite over time. Ion-exchange and catalytic applications of sodalite and cancrinite arise from the high anionic charge of the 1:1 ratio of alternating SiO44- and AlO45units within their aluminosilicate frameworks. In this respect, the uptake capacity of the 14-day zeolitic product for Cu2+ and Cd2+ ions (1.58 meq g-1 and 1.66 meq g-1, respectively) was within the expected range for zeolites and compared favorably with those reported for other inorganic sorbents derived from industrial and municipal wastes. The 14-day product was also found to be an effective basic heterogeneous catalyst for the Knoevenagel condensation reaction.
EN
Zeolites are nanoporous alumina silicates in a framework with cations, exhibiting ion-exchange properties with metal ions making them possible antimicrobial materials. The aim of this study was to evaluate the antimicrobial activity of ion-exchanged zeolites and the toxic potential of these materials. Zeolite-Co2+ and Li+ exhibited the most effective inhibition on Staphylococcus aureus growth than in other microorganisms (Escherichia coli and Pseudomonas aeroginosa) in low concentrations. Zeolite-Cu2+ presented higher zone of inhibition when tested against Candida albicans, while Zeolite-Zn2+ showed similar effectiveness among all the microorganisms. When ion-exchanged zeolites were used in effective concentrations to achieve antimicrobial activity, no alterations against bioindicators organisms as Artemia sp. and L. sativa were found and, in addition, they have non-significant result in terms of DNA cleavage activity. Zeolites have advantage of releasing slowly the metals loaded and this characteristic can to be considered promising as potential antimicrobial materials in concentrations safe for use.
EN
Surfactant and phenol were removed using AMBERLITE IRA 900 Cl ion-exchange resin, which is a strong alkali. In the process, the tests were carried out under non-flow conditions, the effect of contact time and ionite dose on the surfactant and phenol exchange was determined. The tests under the through-flow conditions were realized in three consecutive cycles, preceded by regeneration and rinsing. The obtained results served for determination of ion-exchange capabilities of the studied ionite. The usable ion-exchange capabilities of the resin obtained after the second and third ionite operation cycle were lower by about 10% (surfactant) and 14.29-17.86% (phenol) than those after the first cycle. It shows that the process of sorption occurred simultaneously with the ion-exchange process.
EN
The mining represents one the most common human activities that fundamentally impact not only the country itself but also have adverse effects on the fauna, flora and human beings. The negative impacts also include acid mine drainage which is formed by the dissolution of products resulting from the oxidation (chemically and microbiologically mediated) of sulphide minerals, mainly pyrite or iron disulphide. According to stringent European Union effluent discharge regulations it is necessary to look into innovative technologies to remove considerable amount of effluent rather than discharging into surface water. Resulting from previous partial achievements, the article is focused on the combination of chemical precipitation, ion exchange and biosorption techniques for the acid mine drainage treatment. Concentrations of four different metal cations (copper, iron, manganese, aluminium) and sulphates were observed. First stage of treatment included chemical precipitation by combination of oxidation using 31% hydrogen peroxide and subsequent precipitation with 0.1 M sodium hydroxide. After the first stage, the ion exchange using two different exchangers (PUROLITE MB400 resin and AMBERLITE MB20 resin) took place. The last stage of the experiments was focused of the biosorption study. Low – cost sorbents included in this case natural non – modified peat “PEATSORB” and hemp shives in modified state. Overall, the best results were observed after combination of MB20 resin in the second stage and subsequent using of modified hemp shives in the third stage of the treatment.
PL
Górnictwo jest jedną z działalności człowieka, która ma zasadniczy wpływ na środowisko - faunę, florę i ludzi. Negatywne oddziaływania obejmują także kwaśne wody z drenażu kopalnianego, który powstaje w wyniku rozpuszczania produktów powstałych w wyniku utleniania (chemicznego i mikrobiologicznego) minerałów siarczkowych, głównie pirytu lub dwusiarczku żelaza. Zgodnie z rygorystycznymi przepisami Unii Europejskiej dotyczącymi zrzutu ścieków konieczne jest przyjrzenie się innowacyjnym technologiom, które pozwalają na usunięcie znacznych ilości ścieków, aby uniknąć odprowadzania ich do wód powierzchniowych. W artykule Autorzy skoncentrowali się na kombinacji technik wytrącania chemicznego, wymiany jonowej i biosorpcji. Badano stężenia czterech różnych kationów metali (miedzi, żelaza, manganu, glinu) i siarczanów. Pierwszy etap ługowania obejmował wytrącanie chemiczne przez połączenie utleniania przy użyciu 31% nadtlenku wodoru i następnie wytrącanie 0,1 M wodorotlenkiem sodu. Po pierwszym etapie prowadzono wymianę jonową za pomocą dwóch różnych wymienników (żywica PUROLITE MB400 i żywica AMBERLITE MB20). Ostatni etap eksperymentów skoncentrowano na badaniu biosorpcji. Niskokosztowe sorbenty obejmują w tym przypadku naturalne torfy niezmodyfikowane „PEATSORB” i zmodyfikowane łupiny konopi. Ogólnie najlepsze wyniki zaobserwowano po połączeniu żywicy MB20 w drugim etapie i zastosowaniu zmodyfikowanych łupin konopi w trzecim etapie.
PL
W artykule przedstawiono przegląd wybranych światowych technologii stosowanych do odzysku renu. Opisano technologię odzysku renu z surowców molibdenowych, czyli proces Kennecott. W procesie tym ren odzyskuje się w postaci renianu(VII) amonu (nadrenianu amonu, APR) z zastosowaniem metody jonowymiennej. Inną technologią opartą na technice wymiany jonowej, jest krajowy sposób wydzielania renu z kwaśnych ścieków powstających w trakcie wytwarzania miedzi, gdzie obecnie produkuje się 8 t renianu(VII) amonu rocznie. Ważną techniką hydrometalurgiczną stosowaną do odzysku renu jest ekstrakcja rozpuszczalnikowa - stosuje się ją zarówno dla surowców miedziowych, jak i uranowych. W większości przypadków ren odzyskuje się w postaci APR, jednak istnieją technologie, w których w kolejnych etapach przetwarza się go na ren metaliczny metodami elektrochemicznymi lub z zastosowaniem metod metalurgii proszków. W artykule przedstawiono również opracowane i stosowane technologie odzysku renu z przepracowanych katalizatorów i odpadów superstopów, a w tym w ostatnim przypadku, ze szczególnym uwzględnieniem technologii krajowej opracowanej w Instytucie Metali Nieżelaznych w Gliwicach.
EN
This work presents review of the selected global trends in technologies of rhenium recovery. The Kennecott process dealing with rhenium recovery from molybdenum resources was a/so described here. Ion-exchange method is used to recover rhenium as ammonium perrhenate (APR). Another example based on ion-exchange technique is domestic rhenium recovery from acidic sewage obtained from copper production. Using this method 8 tons of ammonium perrhenate is produced per annum. Another noteworthy hydrometallurgical technique for rhenium recovery is a solvent extraction, which is used for copper as well as uranium raw materials. Mostly, rhenium is recovered as APR, however, there are some technologies including electrochemical and powder metallurgy methods to produce rhenium metal in subsequent stages. This work also presents developed and applied technologies concerning rhenium recovery from spent catalysts and superalloys wastes, particularly focused on a domestic technology developed in Institute of I\lon-Ferrous Metals in Gliwice.
PL
Zanieczyszczenie wód powierzchniowych i podziemnych związkami fluoru jest problemem występującym w wielu regionach świata. Związki te mogą pochodzić zarówno ze źródeł antropogenicznych, jak i naturalnych. Niewielkie ilości fluorków działają korzystnie na rozwój kości i zębów, jednakże ich większe ilości w spożywanej wodzie wpływają szkodliwe na zdrowie człowieka. Zgodnie z wytycznymi WHO oraz polskimi przepisami, zawartość fluorków w wodzie przeznaczonej do spożycia nie może przekraczać 1,5 gF–/m3. Z tego powodu poszukuje się coraz skuteczniejszych i bardziej ekonomicznych metod defluoryzacji wody. Fluorki mogą być usunięte ze środowiska wodnego różnymi metodami fizyczno-chemicznymi, takimi jak adsorpcja, koagulacja, strącanie, wymiana jonowa, a także w procesach membranowych. W pracy omówiono przykłady procesów i technologii eliminacji flourków, z uwzględnieniem ich ograniczeń wpływających na skuteczność usuwania jonów fluorkowych z roztworów wodnych. Wykazano, że stopień usunięcia fluorków w różnych procesach technologicznych zależy przede wszystkim od takich czynników, jak pH roztworu, początkowa zawartość jonów F–, obecność jonów współtowarzyszących, rodzaj adsorbentu czy też właściwości membrany. Wyniki badań wskazują, że realizacja procesu defluoryzacji wody w optymalnych warunkach może zapewnić skuteczność usuwania fluorków przekraczającą 90%.
EN
Fluoride contamination of surface and groundwaters is frequently observed around the world. Fluorides may originate from both anthropogenic and the natural sources. In small amounts, they are beneficial for bone and teeth development. However, higher concentrations in drinking water are harmful to human health. According to WHO guidelines, the fluoride content in drinking water cannot exceed 1.5 gF–/m3. Therefore, more effective and economic defluoridation methods are sought. Fluorides can be removed from water environment by various physico-chemical methods such as adsorption, coagulation, precipitation, ion-exchange as well as the membrane processes. Examples of fluoride elimination processes and techniques are discussed, taking account of their limitations affecting the efficacy of fluoride removal from water solutions. It was demonstrated that the extent of fluoride removal in different technological processes primarily depends on solution pH, the initial F– ion concentration, presence of coexisting ions, adsorbent type and membrane properties. The study results indicate that under optimal operational conditions the fluoride removal efficacy may exceed 90%.
EN
Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2− ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.
PL
Akumulatory w którym jako nośniki ładunku wykorzystywane są jony Na+ lub K+ budzą coraz większe zainteresowanie jako alternatywa dla ogniw litowo-jonowych. Należy podkreślić, że kationy w podsieci A+ potrafią się przemieszczać z- i do dodatnio naładowanych materiałów elektrodowych. Gdy proszek K2Ta2O6 posiadający strukturę pirochloru zanurzono w roztworze wodnym NaOH w temperaturze pokojowej, otrzymano Na2Ta2O6. K2Ta2O6 otrzymano poprzez obróbkę arkuszu tantalu metodą hydrotermalną wykorzystując roztwór wodny KOH. Gdy zanurzono Na2Ta2O6 w wodnym roztworze KOH, otrzymano z powrotem K2Ta2O6. Natomiast, gdy zanurzono KTaO3 o strukturze perowskitu, nie obserwowano wymiany jonowej. Dlatego, że stała sieciowa w strukturze pirochloru układu K-Ta-O jest większa niż w przypadku perowskitu, jony K+ lub Na+ mogą się poruszać i wymieniać w podsieci Ta5+ i O2− w pirochlorze. Wymiana jonów K+ lub Na+ w pirochlorze A2Ta2O6 jest odwracalna. Z tego powodu można się spodziewać, że związek A2Ta2O6 o strukturze pirochloru może znaleźć potencjalne zastosowanie jako element akumulatora pracującego z jonami Na+.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.