In the paper new, interval models of IR proximity sensors are presented. The dependence between distance and signal from sensor is described with the use of exponential function and two parameter Mittag-Leffler function with interval parameters. Identification method for was also proposed. Results of experiments show, that two parameter Mittag-Leffler function most accurate describes a behaviour of proximity IR sensor, than exponential function.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured and predicted behaviours obtained using a faultless system model, a fault can be indicated. Otherwise, nothing can be stated. The same principle can be used to identify interval models for fault detection and to develop methods for fault tolerance evaluation. Finally, some real applications will be used to illustrate the usefulness and performance of set-membership methods for FD and FTC.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.