Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  internal heat generation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present paper deals with thermal behaviour analysis of an axisymmetric functionally graded thermosensitive hollow cylinder. The system of coordinates are expressed in cylindrical-polar form. The heat conduction equation is of time-fractional order02<α≤, subjected to the effect of internal heat generation. Convective boundary conditions are applied to inner and outer curved surfaces whereas heat dissipates following Newton’s law of cooling. The lower surface is subjected to heat flux, whereas the upper surface is thermally insulated. Kirchhoff’s transformation is used to remove the nonlinearity of the heat equation and further it is solved to find temperature and associated stresses by applying integral transformation method. For numerical analysis a ceramic-metal-based functionally graded material is considered and the obtained results of temperature distribution and associated stresses are presented graphically.
EN
A numerical approach has been adopted to investigate the steady chemically mixed convection boundary layer flow from the right face of a vertical plate of finite thickness. Cold fluid flowing over the right face of the plate contains a heat generation that decays exponentially with a dimensionless distance from the surface. The left face of the plate is in contact with a hot flowing fluid. The heating process on that side is characterized by a convective boundary condition that takes into account the conduction resistance of the plate as well as a possible contact resistance between the hot fluid and the left face of the plate. Using a pseudo similarity approach, the governing equations for the mixed convective flow over the right face of the plate are transformed into a set of coupled ordinary differential equations which give local similarity solutions. The effects of local Grashof numbers (defined to represent a mixed convection parameter), Prandtl number, and the internal heat generation parameter on the velocity, temperature and concentration profiles are illustrated and interpreted in physical terms.
EN
A numerical investigation to discuss the effects of radiation and variable viscosity on heat and mass transfer characteristics of natural convection over a horizontal surface embedded in a saturated porous medium in the presence of internal heat generation is carried out in this study. The working fluid for the investigation is optically thick gray gas. The Dufour and Soret effects are also taken into account. Similarity transformations are employed to obtain nonlinear ordinary differential equations from the governing equations of the present problem. The numerical results for the transformed governing equations are computed by using commercial boundary value problem solver for ordinary differential equations. The effects are discussed by varying the parameters such as radiation, Dufour and Soret numbers, buoyancy ratio, Prandtl number, Schmidt number, and variable viscosity. Presence of internal heat generation enhances the velocity profile and significantly decreases the concentration boundary layer thickness. On increasing fluid radiation, the temperature of the fluid is higher than that of the surface and the concentration boundary layer thickness decreases away from the surface.
EN
The aim of this work is to study the mixed convection boundary layer flow from a horizontal surface embedded in a porous medium with exponential decaying internal heat generation (IHG). Boundary layer equations are reduced to two ordinary differential equations for the dimensionless stream function and temperature with two parameters: ε, the mixed convection parameter, and λ, the exponent of x. This problem is numerically solved with a system of parameters using built-in codes in Maple. The influences of these parameters on velocity and temperature profiles, and the Nusselt number, are thoroughly compared and discussed.
EN
In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco-elastic fluid flow over a non-isothermal stretching sheet with variable thermal conductivity and variable mass diffusivity. Similarity transformation are used to convert highly non-linear partial differential equations into ordinary differential equations. Several closed form analytical solutions for non-dimensional temperature, concentration, heat flux and mass flux are obtained in the form of confluent hypergeometric functions for two different types of the boundary conditions, namely: (i) wall with prescribed second-order power law temperature and second-order power law concentration (PST) and (ii)wall with prescribed second-order power law heat flux and second-order power law mass flux (PHF). The effect of various physical parameters such as the suction/blowing parameter , heat source/sink parameter [...], Prandtl number Pr, Schmidt number Sc, visco-elastic parameter and permeability parameter on the temperature and concentration profiles are analyzed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.