Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  interlayer space
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Removal of selected anions by raw halloysite and smectite clay
EN
The structure of clay minerals consists of tetrahedral and octahedral sheets, which can form 1:1, 2:1, and 2:1:1 layers. The halloysite, which belongs to the kaolin group, is composed of 1:1 layers while smectite group minerals contains 2:1 dioctahedral layer. The presence of numerous active centers on mineral surfaces and/or in the interlayer spaces allows them to attract and exchange ions from aqueous solutions. This makes them suitable for removal of harmful/toxic ions such as P(V), As(V), and Cr(VI) (Mozgawa et al. 2011, Matusik 2014) or Pb(II), Cd(II), Zn(II), and Cu(II) (Bhattacharyya & Gupta 2008, Matusik & Wcisło 2014) from wastewaters. The aim of this work was to examine the sorption capacity of natural halloysite and smectite clay towards P(V), As(V), and Cr(VI).Two samples used in this study were collected from Polish deposits. Natural halloysite (H) was obtained from Dunino deposit (located near Legnica in SW Poland), while smectite clay (SC) was obtained from Bełchatów Lignine Mine where it forms an overburden cover. For both raw samples the X-ray diffraction (XRD) patterns and infrared absorption (FTIR) spectra were collected. The sorption of P(V), As(V), and Cr(VI) was conducted as a function of anions concentrations ranging from 0.05 to 50 mmol/L for initial pH of 5 in a single−element system. The suspension of H or SC and corresponding aqueous solution (solid/solution ratio: 20 g/L) was shaken for 24 h at 25°C. Afterwards the anions concentration in the supernatant solution was measured using colorimetric methods. The P(V) and As(V) concentration was determined with the molybdenum blue method, whereas Cr(VI) concentration was measured with diphenylcarbazide method. The XRD pattern of the H sample showed a basal peak at 7.20 Å, which confirms the presence of dehydrated halloysite (7 Å). In turn, the SC exhibited a peak centered at ~12.5 Å with an asymmetric profile starting from ~15.0 Å. Such ref lection suggests the presence of smectite which has both Na+and Ca2+cations in its interlayer space. The IR spectra of the H showed bands specific for kaolin group minerals related to the OH-stretching region (3700−3620 cm−1), vibrations of water molecules (~1630 cm−1) and bands associated with stretching and bending vibrations of aluminosilicate framework (1200−400 cm−1). The IR spectrum of SC showed bands specific for smectite minerals; i.e. 3623 cm−1band attributed to OH hydroxyl located inside the 2:1 layer, and broad band centered at ~3400 cm−1due to interlayer water surrounding cations. Also the structural vibrations of the 2:1 layer were observed in the 1200−400 cm−1 region.The results of the experiment indicated that the sorption capacity of both H and SC samples was relatively high. The highest uptake of P(V) was measured for both materials and it was equal to 201 and 256 mmol/kg, respectively for H and SC. The sorption capacity of H and SC towards As(V) was 168 and 96 mmol/kg, respectively. The 126 sorption of Cr(VI) by H and SC equaled 36 and 104 mmol/kg, respectively. The sorption isotherms were fitted to the Freundlich model (Freundlich 1906) with an exception of P(V) which sorption on H sample was described by Langmuir model (Langmuir 1916). The specific surface areas (SBET) of studied materials were similar: H = 49.52 m2/g and SC = 69.10 m2/g. The sorption centers that may attract anions in both H and SC samples were limited due to isomorphic substitutions in tetrahedral and/or octahedral sheets. This will generate positively charged sites and attract cations rather than anions. It is believed that the mechanism responsible for the adsorption of anions on both materials is mainly surface complexation at t he crystals edges (Bradl 2004). The sorption capacity of H and SC samples was lower than that reported for hydrotalcite − based anion − exchange materials (HTLc). For comparison, the sorption capacity towards P(V), As(V) and Cr(VI) on uncalcined HTLc was 498 mmol/kg (Kuzawa et al. 2006), 596 mmol/kg (Wu et al. 2013) and 314 mmol/kg (Alvarez-Ayuso & Nugteren 2005), respectively. Nevertheless, the examined mineral samples might be used as sorbents for industrial wastewater treatment involving removal of P(V) and As(V).
EN
Smectites are 2:1 layered minerals built of one octahedral sheet located between two tetrahedral sheets. The layer charge derived from the isomorphic substitutions in the mineral structure is compensated by the interlayer cations. The capability to exchange the interlayer cations is an important property of smectites as it enables to design and produce new nanomaterials through their modification with organic compounds. Such hybrid materials are highly desirable in industry and environmental protection due to their specific properties that may be designed in nanoscale. Preparation of photoactive materials using intercalation of layered minerals, mainly synthetic micas, with azobenzene and other azocompounds was proposed previously (Fujita et al. 2003, Ogawa et al. 2003, Heinz et al. 2008). Azobenzene molecules show a change in their shape and dimensions upon the UV irradiation, what may affect the structure of host mineral. The photoactive materials may find application in nanotechnology as molecular nanoswitches and nanosensors controlled by UV radiation (Klajn 2010). The objective of this study was to prepare azobenzene-smectite intercalation compounds. The results of structural and chemical characterization of obtained materials are crucial for further improvement of their photoresponsive properties.The Na-montmorillonite (SWy), Camontmorillonite (STx), beidellite (BId) and synthetic laponite (SynL) were used in the experiments. The modification procedure involved (1) the intercalation of smectites with hexadecyltrimethylammonium bromide (C16), and (2) insertion of azobenzene into the interlayer space. The reaction with C16, in amount equal to 1.0 CEC (cation exchange capacity) of the smectite, was performed in an aqueous suspension (20 g/L) for 2 h in 60°C. The obtained organosmectites were prepared as thin films on the glass plates and reacted with azobenzene in a teflon vessel at ~100°C for 24 h. In such conditions the azobenzene vaporizes and penetrates the interlayer space of the organomineral. The azobenzene/smectite weight ratio was equal to 0.2. The chemical and structural analyses of all obtained samples were carried out using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and CHN (carbon-hydrogen-nitrogen) elemental analysis. The increased amount of nitrogen and carbon in modified samples confirmed the occurrence of intercalation process of both the ammonium salt and the azobenzene. Moreover, new bands appeared in the infrared spectra of the C16-smectites at ~2924 cm−1 and ~2851 cm−1 due to the C-H stretching vibrations in the C16 molecules. The spectra of azobenzene intercalation compounds showed add it ionally a series of bands corresponding to the vibrations characteristic for the azobenzene 2015, vol. 41 (1): 99–100100molecule at ~3061 cm−1, ~1581 cm−1, ~1455 cm−1, and ~1302 cm−1. The basal spacing of tested minerals increased after the C16 intercalation, as confirmed by XRD analysis. The increase was equal to 6.1 Å, 3.3 Å, 4.1 Å and 3.5 Å for SWy, STx, BId and SynL samples, respectively. This suggests nearly horizontal arrangement of the C16 molecules and formation of a monolayer in the smectite’s interlayer space. Introduction of azobenzene lead to a further increase of d001. The increase was visibly different for all the samples and it was equal to 7.0 Å, 15.0 Å, 21.7 Å and 23.5 Å for SWy, STx, Bid, and SynL samples, respectively. The arrangement of organic molecules in the interlayer space is influenced by a number of factors including (1) type of the mineral, (2) layer charge and its location in the layer, and (3) the amount and arrangement of the cationic surfactant (Klapyta et al. 2001, Lagaly et al. 1976). A correlation between azobenzene location in the interlayer space and the photo-response behaviour of tested materials will be the subject of further studies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.