Experimental and numerical study on the mechanical performance of curved steel–concrete composite box girders is reported in this research. First, this research establishes a theoretical model for curved composite girders with 11° of freedoms (DOFs) for each node. The DOFs include the longitudinal displacement, transverse displacement, deflection, torsion angle, warping angle, and interface biaxial slip between steel and concrete. Based on the virtual work theorem, the equilibrium function, the stiffness matrix, the node displacement matrix and the external load matrix are proposed for the curved composite girders using the FE spatial discretization. Second, the authors conduct an experimental program on three large-scale curved composite girders with various interface shear connectors and central angles. The comparison between the developed finite beam element, the elaborate FE model and the test results indicates the developed finite beam element has an adequate level of accuracy in predicting the deflection, the torsion angle and the axial strain distribution of test specimens. Third, based on the developed finite beam element model, the effect of initial curvature, number of diaphragms, and the interface connector stiffness on the curved composite girder is examined. The simulation results showed that the initial curvature significantly contributes to the displacement and stress of composite girders. Applying more diaphragms can notably reduce the distortion angle and distortion displacement. The interface shear connector stiffness has a significant influence on the curved composite girder. With the increasing shear connector stiffness, the displacement and stress of curved composite girders decrease notably. Based on the parametric analyses, it is recommended to limit the central angle of simply supported composite girder below 45°, to apply an adequate number of diaphragms, and to design curved composite girders as fully shear connection specimens.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to present an assessment of slip influence on the deflection of steel plate– concrete composite beams, which are a new type of design concept. The article discusses the non-linear analysis of simply supported beams using Ansys. Willam-Warnke model was used for concrete – this allows the analysis of a complex stress state. For steel elements, bilinear models were used and it was assumed that they work in the uniaxial stress state. Spring elements were used in order to include the slip in the numerical model. The analysis was verified by experimental studies.
PL
W artykule przedstawiono ocenę wpływu poślizgu na ugięcie belek zespolonych typu stalowa blacha–beton, które stanowią nowe rozwiązanie konstrukcyjne. Zaprezentowano analizę numeryczną belek wolnopodpartych obciążonych. W przypadku elementów betonowych zastosowano model betonu zgodnie z teorią Willama-Warnkea, który pozwala na analizę złożonych stanów naprężeń. Dla elementów stalowych zastosowano model biliniowy oraz założono jednoosiowy stan naprężeń. W celu uwzględnienia wpływu podatności łączników wykorzystano elementy sprężynowe. Wyniki analizy zostały zweryfikowane rezultatami badań doświadczalnych.
The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.
PL
Konstrukcje zespolone od wielu lat z sukcesem są stosowane w budownictwie, a ich ciągły rozwój wynika z racjonalnego wykorzystania cech podstawowych materiałów stosowanych w budownictwie – betonu i stali. Ciągłe poszukiwania coraz to lepszych rozwiązań doprowadziły do powstania nowej koncepcji konstrukcyjnej – belek zespolonych typu stalowa blacha-beton. Wywodzi się ona z klasycznych konstrukcji zespolonych, ale czerpie również inspirację z metod wzmacniania żelbetowych belek za pomocą przyklejanych stalowych płaskowników. Pomysł nowego rozwiązania konstrukcyjnego zakłada zastąpienie części stalowej klasycznej konstrukcji zespolonej, która najczęściej była konstruowana w formie dwuteownika lub blachownicy, przez stalową blachę zespoloną z betonem za pomocą łączników (SPCC – steel plate-concrete composite). Przyczepność między tymi częściami składowymi belki zapewniają łączniki wiotkie w postaci sworzni. Badania doświadczalne konstrukcji zespolonych typu stalowa blacha-beton wykazały, że zastosowanie procedur zaproponowanych w normach nie pozwala na poprawne obliczenie ugięć tego typu konstrukcji. Wynika to z hybrydowego charakteru pracy tego typu elementów, które łączą cechy typowych konstrukcji żelbetowych i zespolonych. Niedoszacowanie ugięć spowodowane jest w głównej mierze nieuwzględnieniem podatności łączników wiotkich, co powoduje pominięcie wpływu poślizgu w płaszczyźnie zespolenia na sztywność elementu, a w konsekwencji na ugięcia.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.