Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  interface microstructure
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Reliable ceramics/metal joints have an extensive application in the aerospace and biomedical area. However, ZrO2 ceramic has not been investigated systematically compared to the Si3N4 and Al2O3 ceramic. Therefore, successful brazing of ZrO2 ceramic and Ti-6A-4V alloy was achieved by using a binary active Ti-28Ni filler metal in this paper. The effect of holding time on the microstructure of ZrO2 ceramic/filler metal interface and mechanical properties of brazed joints was investigated. The results indicated that the representative interfacial microstructure was ZrO2 ceramic/Ti2O/Ni2Ti4O/Ti-rich phase/ Ti2Ni+α-Ti. With the increase of holding time, the thickness of Ti-rich layer in the interface of ZrO2/Ti-6Al-4V joint decreased obviously due to the diffusion of Ti atoms. Substantial brittle intermetallic compounds Ti2Ni and Ni2Ti4O were formed in the joint, which were detrimental to the mechanical properties of the brazed joints. The maximum shear strength of joint was 112.7 MPa when brazed at 1060 °C for 10 min.
PL
Niezawodne połączenia ceramiki/metalu mają szerokie zastosowanie w przemyśle lotniczym i biomedycznym. Jednak ceramika Zr02 nie była badana systematycznie w porównaniu z ceramiką Si3N4 i Al2O3. W niniejszym artykule przeprowadzono udany proces lutowania ceramiki Zr02 i stopu Ti-6A-4V, który został osiągnięty dzięki zastosowaniu binarnie aktywnego metalu wypełniającego Ti-28Ni. Zbadano wpływ czasu trwania połączenia na mikrostrukturę powierzchni ceramicznej/metalu wypełniającego ZrO2 oraz właściwości mechaniczne lutowanych połączeń. Wyniki wskazują, że reprezentatywną mikrostrukturą międzyfazową była ceramika ZrO2/Ti2O/Ni2Ti4O/faza bogata w Ti/Ti2Ni+α-Ti. Wraz ze wzrostem czasu trwania połączenia, grubość warstwy bogatej w Ti w interfejsie złącza ZrO2/Ti-6AI-4V zmniejszyła się z powodu dyfuzji atomów Ti. W spoinie powstały znaczne kruche związki międzymetaliczne Ti2Ni i Ni2Ti4O, które były szkodliwe dla właściwości mechanicznych lutowanych połączeń. Maksymalna wytrzymałość złącza na ścinanie wynosiła 112,7 MPa po lutowaniu w 1060 °C przez 10 min.
2
Content available remote Characterization of GFRP interlayer as barrier layer in Al/CFRP laminate
EN
Carbon fibre reinforced polymers (CFRPs) are an attractive construction material with an increasingly wide scope of application, including the aircraft industry. By combining them with metal elements and producing fibre metal laminates (FMLs), it is possible to achieve higher mechanical properties than in the case of combinations with glass fibre reinforced polymer (GFRP). However, there is a problem associated with galvanic corrosion regarding combinations with aluminium and its alloys, stainless steel and with magnesium alloys because CFRP composites are electrical conductors. Adhesives with increasingly higher resistivity are applied in adhesive bonding technology. Fibre metal laminates (FMLs), particularly those dedicated for aircraft primary structures must be not only corrosion resistant, but first of all they must be characterized by a proper combination of mechanical properties, including fatigue features. Therefore, when designing the metal surface treatment and the type of interlayers, it is necessary to consider the joint adhesion, mechanical properties of the hybrid laminate and corrosion properties. This article presents the characterization of an interface microstructure: the anodic layer on the AA 2024 aluminium alloy-GFRP-CFRP interlayer of hybrid laminates with electrical properties presented in a previous publication. The observations have been carried out on cross-sections of Al/GFRP-R/CFRP, Al/GFRP-S/CFRP and Al/CFRP laminates in a 2/1 layout with fibres oriented in the 0° direction. Moreover, impedance measurement was performed for the oxide layer in contact with a 3.5% aqueous NaCl solution by means of electrochemical impedance spectroscopy (EIS). It has been found that the low contact resistivity between the laminate with the GFRP-S interlayer was caused by carbon fibre migration to the Al/GFRP-S boundary. Furthermore, the low surface resistance of the CFRP composite and the porosity of the outer part of the oxide layer on aluminium enables the diffusion of aggressive ions and migration of electrical charge towards the metal substrate, which poses a threat of corrosion initiation in moisture condensation conditions.
PL
Kompozyty polimerowe wzmacniane włóknem węglowym (CFRP) są atrakcyjnym materiałem konstrukcyjnym o coraz szerszym zastosowaniu, w tym w lotnictwie. Łączenie ich z elementami metalowymi oraz wytwarzanie laminatów metalowo-włóknistych (FML) pozwala na uzyskanie wyższych właściwości mechanicznych od połączeń z kompozytem wzmacnianym włóknem szklanym (GFRP). Niestety, dla połączeń z aluminium i jego stopami, stalą nierdzewną, stopami magnezu problemem jest korozja galwaniczna, ponieważ kompozyty CFRP są przewodnikami prądu. Do łączenia technologią klejenia stosuje się kleje o coraz wyższej rezystywności. FML przeznaczone zwłaszcza na lotnicze struktury pierwszorzędowe (ang. aircraft primery structures) muszą nie tylko być odporne na korozję, ale przede wszystkim muszą mieć odpowiedni zestaw właściwości mechanicznych, w tym zmęczeniowych. Dlatego projektowanie obróbki powierzchni metalu i rodzaju międzywarstw musi uwzględniać adhezję połączenia, właściwości mechaniczne hybrydowego laminatu i właściwości korozyjne. W artykule przedstawiono badania mikrostruktury interfejsu: warstwa anodowa na stopie aluminium AA 2024- międzywarstwa GFRP-CFRP laminatów hybrydowych o właściwościach elektrycznych przedstawionych we wcześniejszej publikacji. Obserwacje wykonano na przekrojach laminatów Al/GFRP-R/CFRP, Al/GFRP-S/CFRP oraz Al/CFRP w układzie 2/1 z włóknem w kierunku 0°. Ponadto wykonano pomiar impedancji dla warstwy tlenkowej w kontakcie z 3.5% wodnym roztworem NaCl metodą elektrochemicznej spektroskopii impedancyjnej (EIS). Stwierdzono, że przyczyną niskiej rezystywności kontaktowej laminatu z międzywarstwą GFRP-S była migracja włókna węglowego do granicy Al/GFRP-S. Ponadto niska rezystancja powierzchniowa kompozytu CFRP i porowatość zewnętrznej części warstwy tlenkowej na aluminium umożliwia dyfuzję agresywnych jonów i wędrówkę ładunku elektrycznego w kierunku podłoża metalowego, co stwarza zagrożenie inicjowania korozji w warunkach kondensacji wilgoci.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.