Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  integrated navigation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Changing the Model of Maritime Navigation
EN
The paper describes a short history related to the development of maritime transport at the turn of the 20th century. A classic navigation model used since the mid-twentieth century as well as the development directions of current integrated navigation model have been described here.
2
Content available Scan pattern for the maritime navigator
EN
The maritime high speed craft navigators` ultimate aim has for decades been to safely and efficient navigate the vessel to its destination. The last decade an increased use of technology has arrived at the maritime ship bridge. The use of Electronic Charts and Integrated Navigation Systems has revolutionized much of the work of the navigator, with the aim of enhancing the safety of navigation. The amount of information has drastically increased, and the need for a proper information management and an efficient visual scan pattern has been identified. Looking to other industries this has been introduced with success, and in this paper the authors present a proposed scan pattern for the maritime navigator. The analysis is based on an eye tracking data set collected from simulator- and field studies on board the world’s fastest littoral combat ship.
EN
The Alpha-Beta-Gamma tracking filter is useful for tracking a constant acceleration target with zero lag error in the steady state. It, however, depicts a constant lag error for a maneuvering target. Various algorithms of the Alpha-Beta-Gamma tracking filter exist in literature and each one of them presents its own unique challenges and advantages depending on the design requirement. This study investigates the operation of three Alpha-Beta-Gamma tracking filter design methods which include Benedict-Bordner also known as the Simpson filter, Gray-Murray filter and the fading memory constant acceleration filter. These filters are then compared based on the ability to reduce noise and follow a maneuvering target with minimum lag error, against the jerky model Alpha-Beta-Gamma-Eta. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model in comparison with the constant acceleration models.
EN
The tracking filter plays a key role in accurate estimation and prediction of maneuvering vessel’s position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The Alpha-Beta-Gamma filter is one of the special cases of the general solution pro-vided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity and acceleration for the nth observation, and also predicts the next position and velocity. Although found to track a maneuvering target with a good accuracy than the constant velocity, Alpha-Beta filter, the Alpha-Beta-Gamma filter does not perform impressively under high maneuvers such as when the target is undergoing changing accelerations. This study, therefore, aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The Alpha-Beta-Gamma filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration in order to improve the filter’s performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, Alpha-Beta-Gamma-Eta, algorithm as compared to the constant acceleration model, Alpha-Beta-Gamma in terms of error reduction and stability of the filter during target maneuver.
EN
Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.
EN
Large errors of low-cost MEMS inertial measurement unit (MIMU) lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS). This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.
EN
In the general case measurements performed in navigation are those of position coordinates - points on the trajectory, and trajectory derivatives - speed vector and acceleration vector. Due to the occurrence of systematic and random errors, there is no full conformity of results obtained from measurements by various navigational instruments and systems in the mathematical model of the process of navigation, as well as in specific measurement models. This study attempts to compare trajectories, speeds and accelerations determined by different measurement tools (navigational equipment and systems). The results may be used in an analysis of measurement reliability and of the correct performance of navigational systems and equipment. A comparison of various sources of information also allows to detect and identify systematic errors, so that, consequently, mathematical models of specific phenomena and processes can be verified.
PL
W nawigacji wykonywane są pomiary współrzędnych pozycji – punkty na trajektorii oraz pochodnych trajektorii – wektor prędkości i wektor przyspieszeń. Ze względu na pojawianie się błędów systematycznych i losowych, zarówno w modelu matematycznym procesu nawigacji, jak i w poszczególnych modelach pomiarowych, nie występuje pełna zgodność wyników pomiarów wykonywanych za pomocą różnych urządzeń i systemów nawigacyjnych. W prezentowanym artykule podjęto próbę porównania trajektorii, prędkości i przyspieszeń określonych różnymi narzędziami pomiarowymi (urządzeniami i systemami nawigacyjnymi). Wyniki mogą być wykorzystane w analizie wiarygodności pomiarów oraz poprawności pracy urządzeń i systemów nawigacyjnych. Porównanie różnych źródeł informacji umożliwia również wykrycie i identyfikację błędów systematycznych, a efektem tego może być weryfikacja modeli matematycznych poszczególnych zjawisk i procesów.
EN
In the safety evaluation of maneuvers carried out on the basis of INS indications, the real ship's dimensions are used to determine navigation safety level. The paper presents a new approach to this problem. The ship's maneuvering area and collision probability were calculated incorporating uncertainty areas of ship's plan geometry at given probability level for typical configuration of navigational equipment applied in existing pilot systems. The widening coefficients of safety factors for each configuration set were determined and discussed.
PL
W artykule przedstawiono nowe podejście do problemu oceny bezpieczeństwa manewrów statku wykonanych na podstawie wskazań zintegrowanego systemu nawigacyjnego (ZSN). Przedstawiono metodę wyznaczania obszaru niepewności położenia statku prezentowanego w ZSN oraz wpływ wymiarów obszaru niepewności wyznaczonych dla różnych konfiguracji sprzętowych ZSN na bezpieczeństwo (prawdopodobieństwo wypadku, wielkość akwenu manewrowego).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.