Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  injury risk curves
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Motor vehicle crashes are one of the leading causes of traumatic brain injuries. Restraint systems of cars are evaluated by crash tests based on human tolerance data, however, the reliability of data currently used has been questioned several times in the literature due to the neglect of certain types of effects, injury types and uncertainties. Our main goal was to re-evaluate the currently applied risk curve by taking the previously neglected effects into account. Methods: In this paper, the probability of traumatic brain injury was determined by reliability analysis where different types of uncertainties are taken into account. The tissue-level response of the human brain in the case of frontal crashes was calculated by finite element analyses and the injury probability is determined by Monte Carlo simulations. Sensitivity analysis was also performed to identify which effects have considerable contribution to the injury risk. Results: Our results indicate a significantly larger injury risk than it is predicted by current safety standards. Accordingly, a new risk curve was constructed which follows a lognormal distribution with the following parameters: μLN = 6.5445 and LN = 1.1993. Sensitivity analysis confirmed that this difference primarily can be attributed to the rotational effects and tissue-level uncertainties. Conclusions: Results of the tissue-level reliability analysis enhance the belief that rotational effects are the primary cause of brain injuries. Accordingly, the use of a solely translational acceleration based injury metric contains several uncertainties which can lead to relatively high injury probabilities even if relatively small translational effects occur.
EN
As a result of an explosion under a military vehicle, the risk of threat to life and health of the crew increases. Examination of this event in terms of the security of soldiers comes down to a complex analysis of the mutual interaction of the body of a soldier, seating and structural elements of the vehicle. As a result, shock wave impacts can cause tremor resulting from the construction of the vehicle and acceleration of the passenger's body. This study attempts to analyze the impact of an explosion of an improvised explosive device (IED) under the military vehicle with the risk of cervical spine injuries of soldiers. The analysis was carried out using numerical methods in the LS-DYNA program and was carried out taking into account the variable displacement values and acceleration recorded during the\ explosion. The study used a model of the body of a soldier in the form of a Hybrid III 50th Male Dummy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.