Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  initial temperature
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Gas explosions are major disasters in coal mining, and they typically cause a large number of deaths, injuries and property losses. An appropriate understanding of the effects of combustible gases on the characteristics of methane explosions is essential to prevent and control methane explosions. FLACS software was used to simulate an explosion of a mixture of CH4 and combustible gases (C2H4, C2H6, H2, and CO) at various mixing concentrations and different temperatures (25, 60, 100, 140 and 180℃). After adding combustible gases to methane at a constant volume and atmospheric pressure, the adiabatic flame temperature linearly increases as the initial temperature increases. Under stoichiometric conditions (9.5% CH4-air mixture), the addition of C2H4 and C2H6 has a greater effect on the adiabatic flame temperature of methane than H2 and CO at different initial temperatures. Under the fuel-lean CH4-air mixture (7% CH4-air mixture) and fuel-rich mixture (11% CH4-air mixture), the addition of H2 and CO has a greater effect on the adiabatic flame temperature of methane. In contrast, the addition of combustible gases negatively affected the maximum explosion pressure of the CH4-air mixture, exhibiting a linearly decreasing trend with increasing initial temperature. As the volume fraction of the mixed gas increases, the adiabatic flame temperature and maximum explosion pressure of the stoichiometric conditions increase. In contrast, under the fuel-rich mixture, the combustible gas slightly lowered the adiabatic flame temperature and the maximum explosion pressure. When the initial temperature was 140℃, the fuel consumption time was approximately 8-10 ms earlier than that at the initial temperature of 25℃. When the volume fraction of the combustible gas was 2.0%, the consumption time of fuel reduced by approximately 10 ms compared with that observed when the volume fraction of flammable gas was 0.4%.
EN
In our previous investigation, we measured the global temperature sensitivity coefficient of a deterred spherical single base gun propellant following an experimental procedure that did not allows us to determine the local temperature sensitivity coefficients of the deterred and undeterred parts of the investigated propellant. In this paper, we propose an experimental methodology to measure the local temperature sensitivity coefficients of both parts of the spherical deterred gun propellant. This methodology can be summarized as follows: Firstly, we separated the ranges of pressure where the combustion of the deterred and the undeterred parts of the spherical propellant occurs by means of infrared (IR) microscopy measurements. Then the burning rate of the propellant as a function of pressure was calculated according to STANAG 4115 at different initial temperatures. Finally, we determined the local temperature sensitivity coefficients of each part of the spherical propellant.
EN
The paper deals with issues related to often observed in practice cracks of concrete structures arising just at the stage of their construction. The main cause of these cracks are inhomogeneous volume changes associated with thermal and moisture gradients occurring in structures due to the hydration process. The paper discusses the influence of conditions during concreting such as initial temperature of concrete and ambient temperature on the distribution of temperature, moisture and induced stresses. Some methods of reducing the temperature gradients as use of insulation or pre-cooling are also considered. Two types of structures are analyzed: the massive foundation slab as the example of internally restrained structure and the reinforced concrete wall as the example of externally restrained structure.
PL
Zagadnienia prezentowane w artykule odnoszą się do zarysowań konstrukcji betonowych powstających już w fazie ich wznoszenia. Główną przyczyną powstawania tych rys są nierównomierne zmiany objętościowe twardniejącego betonu związane z powstającymi w procesie twardnienia betonu gradientami temperatur i wilgotności. W artykule analizowano iwpływ warunków prowadzenia robót betonowych, takich jak temperatura początkowa betonu oraz temperatura otoczenia, na rozkład temperatur twardnienia betonu, zmian wilgotności i generowanych naprężeń. Rozpatrzono również niektóre metody ograniczania generowanych gradientów temperatur, takie jak stosowanie izolacji termicznej czy też wstępnego Chłodzenia mieszanki betonowej. Analizowano dwa typy konstrukcji: masywne płyty fundamentowe jako przykład konstrukcji z więzami wewnętrznymi oraz ściany żelbetowe będące przykładem konstrukcji z więzami zewnętrznymi.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.