Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inicjujące materiały wybuchowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono rezultaty analiz dziewięciu opisów patentowych [1-9] polskich wynalazków z zakresu technologii wytwarzania azydku ołowiu, trinitrorezorcynianu ołowiu i tetrazenu - inicjujących materiałów wybuchowych powszechnie stosowanych w amunicji wojskowej. Pięć wynalazków [1,2,7-9] zostało zgłoszonych do polskiego Urzędu Patentowego w trybie jawnym w latach 1935-1975, zaś pozostałe cztery [3-6] zgłoszono jako niejawne w latach 1954-1962. O zdjęciu klauzuli tajności z wynalazków zgłoszonych jako niejawne ogłoszono w Wiadomościach Urzędu Patentowego RP w roku 2007.
EN
Thepaper presents results of analyses of nine patent descriptions [1-9] of Polish inventions on manufacture technology of primary explosives as lead azide, lead trinitrore-sorcinate and tetracene, commonly used in military munitions. Five patent descriptions [1,2,7-9] were filed to the Polish Patent Office in years 1935-1975 as unclassified, and the rest patent descriptions [3-6] were applied as classified in years 1954-1962. Announcements about removing secrecy from the classified patent descriptions, were published in the News of the Polish Patent Office in year 2007.
PL
W artykule przedstawiono podstawowe informacje o wybranych inicjujących materiałach wybuchowych, powszechnie stosowanych w środkach bojowych. Szczególną uwagę skupiono na właściwościach termicznych takich związków jak piorunian rtęci, tetrazen, azydek ołowiu, trójnitrorezorcynian ołowiu (TNRPb). Znajomość właściwości termicznych ww. inicjujących materiałów wybuchowych, pozwala na ich bezpieczne zastosowanie. Właściwości termiczne zostały zbadane z zastosowaniem technik DSC (różnicowa kalorymetria skaningowa) i TGA (analiza termograwimetryczna). Otrzymane wyniki potwierdzają, iż analiza termiczna (DSC i TGA) jest szybką i bezpieczną metodą pozwalającą badać właściwości termiczne inicjujących materiałów wybuchowych, jak i pozostałych materiałów wysokoenergetycznych.
EN
The article presents basic information about selected primary explosives commonly used in warfare agents. Special attention was focused on the thermal properties of such compounds as mercury fulminate, tetrazene, lead azide, lead trinitroresorcinate. Knowledge of the thermal properties of the above-mentioned primary explosives, allows their safe use. Thermal properties have been studied by using DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis) techniques. The results obtained confirm that thermal analysis (DSC and TGA) is a fast and safe method to study the thermal properties of primary explosives as well as other high-energy materials.
3
Content available Nowy układ inicjowania procesu detonacji
PL
W pracy zaprezentowano konstrukcję i wyniki badań nowego układu inicjowania procesu detonacji. Układ nie zawiera żadnych inicjujących materiałów wybuchowych, a proces inicjowania detonacji realizowany jest na drodze udarowego oddziaływania linera (korpusu) na kruszący materiał wybuchowy. W badaniach, do napędzania (wybuchowego rozpęczania) linera wykorzystano materiały wysokoenergetyczne, takie jak pentryt lub proch nitrocelulozowy. Zbadano prędkość ekspansji ścianki bocznej linera oraz wyznaczono wartość jej energii kinetycznej. Wyznaczono całkowity czas zadziałania nowego układu inicjowania detonacji oraz potwierdzono jego przydatność do pobudzania detonacji kruszących materiałów wybuchowych.
EN
The design and test results of a new initiator of detonation process are presented in the paper. The system does not include any initiating explosives and the process of initiating the detonation is performed through the impact action of a liner (body) against the high explosive (HE) material. The high energetic materials such as pentryt or nitrocellulose powder were used for propelling (explosive bulging) the liner. The expanding velocity of the liner side wall was investigated and the value of its kinetic energy was determined. Total time of operation for the new detonation initiating unit was determined and its suitability for initiating detonation of HE was confirmed.
4
Content available remote Inicjujące materiały wybuchowe z grupy związków kompleksowych
EN
For more than one hundred years, mercury fulminate (MF), lead azide (LA) and lead styphnate (LS) have been used as primary explosives (Fig. 1). They are very good initiatory explosives but they also suffer from serious drawbacks, such as: (a) extremely high sensitivity to mechanical stimuli, (b) thermal, hydrolytic, and chemical instability or lack of resistance to light, (c) incompatibility with metals commonly used in initiating devices, (d) high toxicity of the compounds themselves and their decomposition products [1, 2]. The ongoing search for new primary explosives is aimed at finding materials safer in production and use which do not contain heavy metals and exhibit better initiating performance than the multicomponent compositions being used now. The replacements of the present primaries should be more resistant to accidental stimuli (electrostatic discharge, impact, friction), but they must reliably inflame or detonate, e.g. upon exposure to flame, electrically heated wire or strike with a firing pin in stab and percussion initiators. However their thermal stability should not be too low in order to avoid unexpected explosions of ammunition exposed to heat flow from a fire. On the other hand some of the materials (detonants) must be capable of fast transition from deflagration to detonation. It is not easy to reconcile so many contradictory demands, but from the recently published papers, it appears that it may be possible [3–5]. It has been confirmed many times that some complex compounds with a general formula Mx(L)y(XO)z where M denotes a transition metal cation, L is a nitrogen rich ligand, and XO is an oxygen containing anion are effective primary explosives [3]. The cation plays structure-creating role (i.e. coordinates other molecules) providing stability of the compound and required level of safety. Usually it is also a catalyst of the first stage of decomposition which assures a rapid deflagration to detonation transition – inherent feature of primary explosives. In order to maximize the heat effect of decomposition, the oxygen balance of the compounds ought to be close to zero. Thanks to this the initiating performance of the new primaries may be higher than that of azides and flumintaes. In this work we present a review of papers devoted to synthesis, chemical composition, molecular structure and explosive properties of primary explosives from the group of coordination compounds. A lot of attention was paid especially to the explosives that have already been used in initiating devices and those with unique properties, e.g. highly sensitive to laser radiation. To systematize the review, the title compounds were divided into groups which distinguishing feature was the kind of ligand.
5
Content available remote Współczesne i przyszłe materiały wybuchowe
EN
The replacement of black powder with nitro compounds in the middle of the 19th century revolutionized warfare, mining and civil engineering. The performance of the explosives that came into use at that time and which are still commonly used (nitroglycerine, nitrocellulose, trinitrotoluene) is three times higher than that of black powder. Within the next 150-year evolutionary development of explosives, their performance has been increased by about 60%. During that period, useful explosives were searched among organic compounds containing carbon, hydrogen, nitrogen and oxygen. The search was quite successful. For example stable caged nitroamines (HNIW, Fig. 3) were synthesized which densities are higher than 2 g/cm3 and detonation velocity exceeds 10 km/s. Recently, potential candidates for high energy density materials (HEDM) have been observed among meta-stable compounds (e.g. all-nitrogen compounds), molecular composites where fuel and oxidizer are mixed at a molecular level or nano-systems of reactive materials. It is assessed that in this way useful explosives can be produced with performance even ten times higher than that of HMX - the best explosive that is in use today. Such an increase in energy content would make possible miniaturization of ammunition and the fire power of small arms would become comparable to the contemporary artillery. This means not only enormous change in the battlefield tactics but also new threats of terrorist attacks on the critical infrastructure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.