Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inherent optical properties
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Satellite sensors are used to monitor water on a large scale. One of the key variables defining the water-leaving signal is suspended particulate matter (SPM) and thus it is important to understand its properties to improve remote sensing algorithms. However, only a few studies investigating the variability of SPM properties (concentration, nature and size) under different seasonal, weather and geographical conditions have been carried out in the Baltic Sea. We focused on relatively shallow areas (maximum depth of 10 m) where there is strong sediment transport by rivers and resuspension of the particles by wave action and advection by currents. Eleven field campaigns were conducted using a set of instruments measuring inherent optical properties, auxiliary data, and, in Pärnu Bay, also particle size distributions. The results showed that the SPM concentrations, particulate absorption, mass-specific particulate scattering, and backscattering varied temporally and spatially from 5.5–19.6 g m−3, 0–5.62 m−1, 0.08–1.45 m2 g−1, and 0.0009–0.25 m2 g−1, respectively. The spectral backscattering ratio, which in general is considered to be constant in bio-optical remote sensing algorithms, was actually wavelength-dependent and varied between 0.005 and 0.09 depending on the origin of the particles (organic or mineral matter), particle size distribution, weather conditions, and location. In situ particle size measurements in coastal waters of Pärnu Bay also showed that resuspended fine clay particles agglomerated into flocs of >30 µm in the brackish waters of the Baltic Sea having random shapes and different sizes.
EN
The inherent optical properties (IOPs) of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdańsk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and chlorophyll a (Chl a). Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude). Although most of the particle populations encountered were composed primarily of organic matter (av. POM/SPM = ca 0.8), the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs) of at least 30% to 40%, usually more than 50%). Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters - SPM, POM, POC or Chl a - is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in practice, but their application will inevitably entail effective statistical errors of estimation of the order of 50% or more.
3
Content available remote Inverse methods in hydrologic optics
EN
Methods for solving the hydrologic-optics inverse problem, i.e., estimating the inherent optical properties of a water body based solely on measurements of the apparent optical properties, are reviewed in detail. A new method is developed for the inverse problem in water bodies in which fluorescence is important. It is shown that in principle, given profiles of the spectra of up- and downwelling irradiance, estimation of the coefficient of inelastic scattering from any wave band to any other wave band can be effected.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.